1
|
Heinrich MK, von Mammen S, Hofstadler DN, Wahby M, Zahadat P, Skrzypczak T, Soorati MD, Krela R, Kwiatkowski W, Schmickl T, Ayres P, Stoy K, Hamann H. Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics. J R Soc Interface 2019; 16:20190238. [PMID: 31362616 PMCID: PMC6685033 DOI: 10.1098/rsif.2019.0238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.
Collapse
Affiliation(s)
- Mary Katherine Heinrich
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Sebastian von Mammen
- Human–Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Mostafa Wahby
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| | - Payam Zahadat
- Institute of Biology, Artificial Life Lab, University of Graz, Graz, Austria
- Department of Computer Science, IT University of Copenhagen, Kobenhavn, Denmark
| | - Tomasz Skrzypczak
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | | | - Rafał Krela
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Kwiatkowski
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Schmickl
- Institute of Biology, Artificial Life Lab, University of Graz, Graz, Austria
| | - Phil Ayres
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Kasper Stoy
- Department of Computer Science, IT University of Copenhagen, Kobenhavn, Denmark
| | - Heiko Hamann
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Webster-Wood VA, Akkus O, Gurkan UA, Chiel HJ, Quinn RD. Organismal Engineering: Towards a Robotic Taxonomic Key for Devices Using Organic Materials. Sci Robot 2017; 2:eaap9281. [PMID: 31360812 PMCID: PMC6663099 DOI: 10.1126/scirobotics.aap9281] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Can we create robots with the behavioral flexibility and robustness of animals? Engineers often use bio-inspiration to mimic animals. Recent advances in tissue engineering now allow the use of components from animals. By integrating organic and synthetic components, researchers are moving towards the development of engineered organisms whose structural framework, actuation, sensing, and control are partially or completely organic. This review discusses recent exciting work demonstrating how organic components can be used for all facets of robot development. Based on this analysis, we propose a Robotic Taxonomic Key to guide the field towards a unified lexicon for device description.
Collapse
Affiliation(s)
| | - Ozan Akkus
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A. Gurkan
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Hillel J. Chiel
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Roger D. Quinn
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|