1
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
2
|
Yamada S, Yassin MA, Torelli F, Hansmann J, Green JBA, Schwarz T, Mustafa K. Unique osteogenic profile of bone marrow stem cells stimulated in perfusion bioreactor is Rho-ROCK-mediated contractility dependent. Bioeng Transl Med 2023; 8:e10509. [PMID: 37206242 PMCID: PMC10189446 DOI: 10.1002/btm2.10509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
The fate determination of bone marrow mesenchymal stem/stromal cells (BMSC) is tightly regulated by mechanical cues, including fluid shear stress. Knowledge of mechanobiology in 2D culture has allowed researchers in bone tissue engineering to develop 3D dynamic culture systems with the potential for clinical translation in which the fate and growth of BMSC are mechanically controlled. However, due to the complexity of 3D dynamic cell culture compared to the 2D counterpart, the mechanisms of cell regulation in the dynamic environment remain relatively undescribed. In the present study, we analyzed the cytoskeletal modulation and osteogenic profiles of BMSC under fluid stimuli in a 3D culture condition using a perfusion bioreactor. BMSC subjected to fluid shear stress (mean 1.56 mPa) showed increased actomyosin contractility, accompanied by the upregulation of mechanoreceptors, focal adhesions, and Rho GTPase-mediated signaling molecules. Osteogenic gene expression profiling revealed that fluid shear stress promoted the expression of osteogenic markers differently from chemically induced osteogenesis. Osteogenic marker mRNA expression, type 1 collagen formation, ALP activity, and mineralization were promoted in the dynamic condition, even in the absence of chemical supplementation. The inhibition of cell contractility under flow by Rhosin chloride, Y27632, MLCK inhibitor peptide-18, or Blebbistatin revealed that actomyosin contractility was required for maintaining the proliferative status and mechanically induced osteogenic differentiation in the dynamic culture. The study highlights the cytoskeletal response and unique osteogenic profile of BMSC in this type of dynamic cell culture, stepping toward the clinical translation of mechanically stimulated BMCS for bone regeneration.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Mohammed A. Yassin
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Francesco Torelli
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Jan Hansmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISCWürzburgGermany
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital WürzburgWürzburgGermany
- Department of Electrical EngineeringUniversity of Applied Sciences Würzburg‐SchweinfurtSchweinfurtGermany
| | - Jeremy B. A. Green
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonUK
| | - Thomas Schwarz
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISCWürzburgGermany
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| |
Collapse
|
3
|
Jaramillo-Cañas W, Britto-Bisso F, Fernandez-Valiente C, Casado FL. Open-source perfusion system for medium-scale fabrication of demineralized bone matrix chip grafts. HARDWAREX 2023; 13:e00378. [PMID: 36483326 PMCID: PMC9722481 DOI: 10.1016/j.ohx.2022.e00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Demineralized bone matrix (DBM) is considered one of the most reliable bone tissue grafts for regular surgical use, as it provides a scaffold that is structurally like native bone, and that enhances bone regeneration. However, commercially available DBM products are not suited for surgical restitutions of large bones. Therefore, each Tissue Bank is urged to implement their own demineralization protocol, which usually does not meet the high demand for bone grafting. In this project, we developed an open source system for medium-scale manufacturing of DBM grafts from human cadaveric donors to automate the demineralization protocol and improve its reproducibility. The device consists in (1) unidirectional flow reaction chamber, where the demineralization protocol takes place; (2) automated syringe pump, which controls the reagent́s inlet and vacuum; and (3) reagent dispenser, for the management of the reagents need for the demineralization protocol. Validation of the device included histological analysis, DNA quantification temperature regulation, electrochemiluminescence and colorimetric protocols, followed by the optimization of physicochemical parameters based on Response Surface Methodology. The results showed values of residual lipids and calcium within standardized ranges, and the maintenance of the structural integrity of the DBM, demonstrating the capacity of the system to support the proposed demineralization protocol.
Collapse
Affiliation(s)
| | - Frank Britto-Bisso
- Program of Biomedical Engineering PUCP-UPCH, Pontificia Universidad Catolica del Peru, Avenida Universitaria 1801, Lima 15088, Peru
| | - Cesar Fernandez-Valiente
- Program of Biomedical Engineering PUCP-UPCH, Pontificia Universidad Catolica del Peru, Avenida Universitaria 1801, Lima 15088, Peru
| | - Fanny L. Casado
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Avenida Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
4
|
Gehlen J, Qiu W, Schädli GN, Müller R, Qin XH. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater 2023; 156:49-60. [PMID: 35718102 DOI: 10.1016/j.actbio.2022.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
Tomographic volumetric bioprinting (VBP) has recently emerged as a powerful tool for rapid solidification of cell-laden hydrogel constructs within seconds. However, its practical applications in tissue engineering requires a detailed understanding of how different printing parameters (concentration of resins, laser dose) affect cell activity and tissue formation. Herein, we explore a new application of VBP in bone tissue engineering by merging a soft gelatin methacryloyl (GelMA) bioresin (<5 kPa) with 3D endothelial co-culture to generate heterocellular bone-like constructs with enhanced functionality. To this, a series of bioresins with varying concentrations of GelMA and lithium Phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP) photoinitiator were formulated and characterized in terms of photo-reactivity, printability and cell-compatibility. A bioresin with 5% GelMA and 0.05% LAP was identified as the optimal formulation for VBP of complex perfusable constructs within 30 s at high cell viability (>90%). The fidelity was validated by micro-computed tomography and confocal microscopy. Compared to 10% GelMA, this bioresin provided a softer and more permissive environment for osteogenic differentiation of human mesenchymal stem cells (hMSCs). The expression of osteoblastic markers (collagen-I, ALP, osteocalcin) and osteocytic markers (podoplanin, Dmp1) was monitored for 42 days. After 21 days, early osteocytic markers were significantly increased in 3D co-cultures of hMSCs with human umbilical vein endothelial cells (HUVECs). Additionally, we demonstrate VBP of a perfusable, pre-vascularized model where HUVECs self-organized into an endothelium-lined channel. Altogether, this work leverages the benefits of VBP and 3D co-culture, offering a promising platform for fast scaled biofabrication of 3D bone-like tissues with unprecedented functionality. STATEMENT OF SIGNIFICANCE: This study explores new strategies for ultrafast bio-manufacturing of bone tissue models by leveraging the advantages of tomographic volumetric bioprinting (VBP) and endothelial co-culture. After screening the properties of a series of photocurable gelatin methacryloyl (GelMA) bioresins, a formulation with 5% GelMA was identified with optimal printability and permissiveness for osteogenic differentiation of human mesenchymal stem cells (hMSC). We then established 3D endothelial co-cultures to test if the heterocellular interactions may enhance the osteogenic differentiation in the printed environments. This hypothesis was evidenced by increased gene expression of early osteocytic markers in 3D co-cultures after 21 days. Finally, VBP of a perfusable cell-laden tissue construct is demonstrated for future applications in vascularized tissue engineering.
Collapse
Affiliation(s)
- Jenny Gehlen
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Wanwan Qiu
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Gian Nutal Schädli
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
6
|
Schröder M, Reseland JE, Haugen HJ. Osteoblasts in a Perfusion Flow Bioreactor-Tissue Engineered Constructs of TiO 2 Scaffolds and Cells for Improved Clinical Performance. Cells 2022; 11:1995. [PMID: 35805079 PMCID: PMC9265932 DOI: 10.3390/cells11131995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Combining biomaterial scaffolds with cells serves as a promising strategy for engineering critical size defects; however, homogenous cellular growth within large scaffolds is challenging. Mechanical stimuli can enhance bone regeneration by modulating cellular growth and differentiation. Here, we compare dynamic seeding in a perfusion flow bioreactor with static seeding for a synthetic bone scaffold for up to 21 days using the cell line MC3T3-E1 and primary human osteoblast, confocal laser scanning microscopy, and real-time reverse transcriptase-polymerase chain reaction. The secretion of bone-related proteins was quantified using multiplex immunoassays. Dynamic culture improved cellular distribution through the TiO2 scaffold and induced a five-fold increase in cell number after 21 days. The relative mRNA expression of osteopontin of MC3T3-E1 was 40-fold enhanced after 7 and 21 days at a flow rate of 0.08 mL/min, and that of collagen type I alpha I expression was 18-fold after 21 days. A flow rate of 0.16 mL/min was 10-fold less effective. Dynamic culture increased the levels of dickkopf-related protein 1 (60-fold), osteoprotegrin (29-fold), interleukin-6 (23-fold), interleukin-8 (36-fold), monocyte chemoattractant protein 1 (28-fold) and vascular endothelial growth factor (6-fold) in the medium of primary human osteoblasts after 21 days compared to static seeding. The proposed method may have clinical potential for bone tissue engineering.
Collapse
Affiliation(s)
| | | | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, NO-0317 P.O. Box 1109 Blindern Oslo, Norway; (M.S.); (J.E.R.)
| |
Collapse
|
7
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
9
|
Schädli GN, Vetsch JR, Baumann RP, de Leeuw AM, Wehrle E, Rubert M, Müller R. Time-lapsed imaging of nanocomposite scaffolds reveals increased bone formation in dynamic compression bioreactors. Commun Biol 2021; 4:110. [PMID: 33495540 PMCID: PMC7835377 DOI: 10.1038/s42003-020-01635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Progress in bone scaffold development relies on cost-intensive and hardly scalable animal studies. In contrast to in vivo, in vitro studies are often conducted in the absence of dynamic compression. Here, we present an in vitro dynamic compression bioreactor approach to monitor bone formation in scaffolds under cyclic loading. A biopolymer was processed into mechanically competent bone scaffolds that incorporate a high-volume content of ultrasonically treated hydroxyapatite or a mixture with barium titanate nanoparticles. After seeding with human bone marrow stromal cells, time-lapsed imaging of scaffolds in bioreactors revealed increased bone formation in hydroxyapatite scaffolds under cyclic loading. This stimulatory effect was even more pronounced in scaffolds containing a mixture of barium titanate and hydroxyapatite and corroborated by immunohistological staining. Therefore, by combining mechanical loading and time-lapsed imaging, this in vitro bioreactor strategy may potentially accelerate development of engineered bone scaffolds and reduce the use of animals for experimentation. Schädli et al. present a bioreactor system that combines mechanical loading with longitudinal microCT imaging to assess bone mineralization in a poly(lactic-co-glycolic acid) (PLGA) scaffold reinforced with nanoparticles. This approach allows rapid and rigorous evaluation of engineered bone scaffolds performance in vitro and might reduce the use of animals for experimentation.
Collapse
Affiliation(s)
- Gian Nutal Schädli
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jolanda R Vetsch
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert P Baumann
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Anke M de Leeuw
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Bhattarai SR, Saudi S, Khanal S, Aravamudhan S, Rorie CJ, Bhattarai N. Electrodynamic assisted self-assembled fibrous hydrogel microcapsules: a novel 3D in vitro platform for assessment of nanoparticle toxicity. RSC Adv 2021; 11:4921-4934. [PMID: 35424445 PMCID: PMC8694512 DOI: 10.1039/d0ra09189h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle (NP) toxicity assessment is a critical step in assessing the health impacts of NP exposure to both consumers and occupational workers. In vitro assessment models comprising cells cultured in a two-dimensional tissue culture plate (2D-TCP) are an efficient and cost-effective choice for estimating the safety risks of NPs. However, in vitro culture of cells in 2D-TCPs distorts cell–integrin and cell–cell interactions and is not able to replicate an in vivo phenotype. Three-dimensional (3D) in vitro platforms provide a unique alternative to bridge the gap between traditional 2D in vitro and in vivo models. In this study, novel microcapsules of alginate hydrogel incorporated with natural polymeric nanofibers (chitin nanofibrils) and synthetic polymeric nanofibers poly(lactide-co-glycolide) are designed as a 3D in vitro platform. This study demonstrates for the first time that electrodynamic assisted self-assembled fibrous 3D hydrogel (3D-SAF hydrogel) microcapsules with a size in the range of 300–500 μm in diameter with a Young's modulus of 12.7–42 kPa can be obtained by varying the amount of nanofibers in the hydrogel precursor solutions. The 3D-SAF microcapsules were found to mimic the in vivo cellular microenvironment for cells to grow, as evaluated using A549 cells. Higher cellular spreading and prolonged proliferation of A549 cells were observed in 3D-SAF microcapsules compared to control microcapsules without the nanofibers. The 3D-SAF microcapsule integrated well plate was used to assess the toxicity of model NPs, e.g., Al2O3 and ZnO. The toxicity levels of the model NPs were found to be dependent on the chemistry of the NPs and their physical agglomeration in the test media. Our results demonstrate that 3D-SAF microcapsules with an in vivo mimicking microenvironment can be developed as a physiologically relevant platform for high-throughput toxicity screening of NPs or pharmaceutical drugs. Electrohydrodynamic-assisted fabrication of novel nano-net-nanofibrous 3D-SAF hydrogel microcapsules leads to them having tunable mechanical and cell adhesive properties that are applicable to diverse biomedical fields.![]()
Collapse
Affiliation(s)
- Shanta R. Bhattarai
- Department of Biology
- North Carolina A&T State University
- Greensboro
- USA
- Department of Biological Science
| | - Sheikh Saudi
- Department of Nanoengineering
- Joint School of Nanoscience and Nanoengineering
- North Carolina A&T State University
- Greensboro
- USA
| | - Shalil Khanal
- Department of Applied Science and Technology
- North Carolina A&T State University
- Greensboro
- USA
| | - Shyam Aravamudhan
- Department of Nanoengineering
- Joint School of Nanoscience and Nanoengineering
- North Carolina A&T State University
- Greensboro
- USA
| | - Checo J. Rorie
- Department of Biology
- North Carolina A&T State University
- Greensboro
- USA
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering
- North Carolina A & T State University
- Greensboro
- USA
| |
Collapse
|
11
|
Ma L, Zhang Y, Wang C. Coaction of TGF-β1 and CDMP1 in BMSCs-induced laryngeal cartilage repair in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:130. [PMID: 33252704 DOI: 10.1007/s10856-020-06454-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are well-known for tissue regeneration and bone repair. This study intended to evaluate the potential efficiency BMSCs in poly(lactide-co-glycolide) (PLGA) scaffolds for the treatment of laryngeal cartilage defects. BMSCs were isolated and identified, and added with 10 ng/mL transforming growth factor-beta1 (TGF-β1) or/and 300 ng/mL CDMP1 to coculture with PLGA scaffolds. The chondrogenic differentiation, migration, and apoptosis of BMSCs were detected under the action of TGF-β1 or/and CDMP1. After successful modeling of laryngeal cartilage defects, PLGA scaffolds were transplanted into the rabbits correspondingly. After 8 weeks, laryngeal cartilage defects were assessed. Levels of collagen II, aggrecan, Sox9, Smad2, Smad3, ERK, and JNK were detected. The TGF-β1 or/and CDMP1-induced BMSCs expressed collagen II, aggrecan, and Sox9, with enhanced cell migration and inhibited apoptosis. In addition, laryngeal cartilage defect in rabbits with TGF-β1 or/and CDMP1 was alleviated, and levels of specific cartilage matrix markers were decreased. The combined effects of TGF-β1 and CDMP1 were more significant. The TGF-β1/Smad and ERK/JNK pathways were activated after TGF-β1 or/and CDMP1 were added to BMSCs or rabbits. In summary, BMSCs and PLGA scaffolds repair laryngeal cartilage defects in rabbits by activating the TGF-β1/Smad and ERK/JNK pathways under the coaction of TGF-β1 and CDMP1.
Collapse
Affiliation(s)
- Linxiang Ma
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China
| | - Yonghong Zhang
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China
| | - Caihua Wang
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, PR China.
| |
Collapse
|
12
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
13
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|