1
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
2
|
Ribeiro S, Pugliese E, Korntner SH, Fernandes EM, Gomes ME, Reis RL, O'Riordan A, Bayon Y, Zeugolis DI. Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures. Eng Life Sci 2022; 22:619-633. [PMID: 36247829 PMCID: PMC9550738 DOI: 10.1002/elsc.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.
Collapse
Affiliation(s)
- Sofia Ribeiro
- MedtronicSofradim ProductionTrevouxFrance
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Eugenia Pugliese
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stefanie H. Korntner
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Emanuel M. Fernandes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | - Yves Bayon
- MedtronicSofradim ProductionTrevouxFrance
| | - Dimitrios I. Zeugolis
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL)Charles Institute of DermatologyConway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials EngineeringUniversity College Dublin (UCD)DublinIreland
| |
Collapse
|
3
|
Salonius E, Meller A, Paatela T, Vasara A, Puhakka J, Hannula M, Haaparanta AM, Kiviranta I, Muhonen V. Cartilage Repair Capacity within a Single Full-Thickness Chondral Defect in a Porcine Autologous Matrix-Induced Chondrogenesis Model Is Affected by the Location within the Defect. Cartilage 2021; 13:744S-754S. [PMID: 34308665 PMCID: PMC8804745 DOI: 10.1177/19476035211030988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Large articular cartilage defects are a challenge to regenerative surgery. Biomaterial scaffolds might provide valuable support for restoration of articulating surface. The performance of a composite biomaterial scaffold was evaluated in a large porcine cartilage defect. DESIGN Cartilage repair capacity of a biomaterial combining recombinant human type III collagen (rhCo) and poly-(l/d)-lactide (PLA) was tested in a porcine model. A full-thickness chondral defect covering the majority of the weightbearing area was inflicted to the medial femoral condyle of the right knee. Spontaneous cartilage repair and nonoperated healthy animals served as controls. The animals were sacrificed after a 4-month follow-up. The repair tissue was evaluated with the International Cartilage Repair Society (ICRS) macroscopic score, ICRS II histological score, and with micro-computed tomography. Additionally, histopathological evaluation of lymph nodes and synovial samples were done for toxicological analyses. RESULTS The lateral half of the cartilage defect in the operated groups showed better filling than the medial half. The mean overall macroscopic score for the rhCo-PLA, spontaneous, and nonoperated groups were 5.96 ± 0.33, 4.63 ± 0.42, and 10.98 ± 0.35, respectively. The overall histological appearance of the specimens was predominantly hyaline cartilage in 3 of 9 samples of the rhCo-PLA group, 2 of 8 of the spontaneous group, and 9 of 9 of the nonoperated group. CONCLUSIONS The use of rhCo-PLA scaffold did not differ from spontaneous healing. The repair was affected by the spatial properties within the defect, as the lateral part of the defect showed better repair than the medial part, probably due to different weightbearing conditions.
Collapse
Affiliation(s)
- E. Salonius
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Surgery, Päijät-Häme
Central Hospital, Lahti, Finland,E. Salonius, Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Biomedicum Helsinki,
Haartmaninkatu 8, Helsinki, 00014, Finland.
| | - A. Meller
- University of Helsinki, HiLIFE–Helsinki
Institute of Life Science Laboratory Animal Center, Helsinki, Finland
| | - T. Paatela
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - A. Vasara
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - J. Puhakka
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - M. Hannula
- Department of Electronics and
Communications Engineering, Tampere University of Technology, BioMediTech, Institute
of Biosciences and Medical Technology, Tampere, Pirkanmaa, Finland
| | - A.-M. Haaparanta
- Department of Electronics and
Communications Engineering, Tampere University of Technology, BioMediTech, Institute
of Biosciences and Medical Technology, Tampere, Pirkanmaa, Finland
| | - I. Kiviranta
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - V. Muhonen
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Modulation of stem cell response using biodegradable polyester films with different stiffness. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Biomechanical and functional comparison of moulded and 3D printed medical silicones. J Mech Behav Biomed Mater 2021; 122:104649. [PMID: 34218017 DOI: 10.1016/j.jmbbm.2021.104649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/15/2022]
Abstract
Modern 3D printing of implantable devices provides an important opportunity for the development of personalized implants with good anatomical fit. Nevertheless, 3D printing of silicone has been challenging and the recent advances in technology are provided by the systems which can print medical grade silicone via extrusion. However, the potential impacts of the 3D printing process of silicone on its biomechanical properties has not been studied in sufficient detail. Therefore, the present study compares 3D printed and moulded silicone structures for their cytotoxicity, surface roughness, biomechanical properties, and in vivo tissue reaction. The 3D printing process creates increased nanoscale roughness and noticeably changes microscale topography. Neither the presence of these features nor the differences in processes were found to result in an increase in cytotoxicity or tissue reaction for 3D printed structures, exhibiting limited inflammatory reaction and cell viability above the threshold values. On the contrary, the biomechanical properties have demonstrated significant differences in static and dynamic conditions, and in thermal expansion. Our results demonstrate that 3D printing can be used for establishing a better biomechanical microenvironment for the surrounding tissue of the implant particularly for fragile soft tissue like epithelial mucosa without having any negative effect on the cytotoxicity or in vivo reaction to silicone. For engineering of the implants, however, one must consider the differences in mechanical properties to result in correct and personalized geometry and proper physical interaction with tissues.
Collapse
|
6
|
Zhang J, Li B, Zuo J, Gu R, Liu B, Ma C, Li J, Liu K. An Engineered Protein Adhesive with Properties of Tissue Integration and Controlled Release for Efficient Cartilage Repair. Adv Healthc Mater 2021; 10:e2100109. [PMID: 33949138 DOI: 10.1002/adhm.202100109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Cartilage damage is a prevalent health concern among humans. The inertness of cartilage, the absence of self-healing properties, and the lack of appropriate repair materials that integrate into the tissue pose a significant challenge for cartilage repair. Thus, it is important to develop novel soft biomaterials with strong tissue adhesion and chondrogenic capabilities for cartilage repair. Herein, a new type of protein adhesive is reported that exhibits superior cartilage repair performance. The material is fabricated by the electrostatic combination of chondroitin sulfate (CS) and positively charged elastin-like protein, which is derived from natural components of the extracellular matrix (ECM). The adhesive showed robust adhesion properties on different tissue substrates, offering a favorable environment for cartilage tissue integration. Noncovalent bonding between CS molecules in the glue allows for its controlled release, which is required for efficient chondrogenic differentiation. When implanted into a rat model of cartilage defect, this protein adhesive exhibited beneficial healing effects, as evidenced by enhanced chondrogenesis, sufficient ECM production, and lateral integration. Therefore, this engineered protein complex is a promising candidate for translational application in the field of cartilage repair.
Collapse
Affiliation(s)
- Jinrui Zhang
- Department of Orthopedics China‐Japan Union Hospital of Jilin University Changchun 130033 China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jianlin Zuo
- Department of Orthopedics China‐Japan Union Hospital of Jilin University Changchun 130033 China
| | - Rui Gu
- Department of Orthopedics China‐Japan Union Hospital of Jilin University Changchun 130033 China
| | - Bin Liu
- Department of Orthopedics China‐Japan Union Hospital of Jilin University Changchun 130033 China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Chao Ma
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
7
|
Gasik M, Lambert F, Bacevic M. Biomechanical Properties of Bone and Mucosa for Design and Application of Dental Implants. MATERIALS 2021; 14:ma14112845. [PMID: 34073388 PMCID: PMC8199480 DOI: 10.3390/ma14112845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Dental implants’ success comprises their proper stability and adherence to different oral tissues (integration). The implant is exposed to different mechanical stresses from swallowing, mastication and parafunctions for a normal tooth, leading to the simultaneous mechanical movement and deformation of the whole structure. The knowledge of the mechanical properties of the bone and gingival tissues in normal and pathological conditions is very important for the successful conception of dental implants and for clinical practice to access and prevent potential failures and complications originating from incorrect mechanical factors’ combinations. The challenge is that many reported biomechanical properties of these tissues are substantially scattered. This study carries out a critical analysis of known data on mechanical properties of bone and oral soft tissues, suggests more convenient computation methods incorporating invariant parameters and non-linearity with tissues anisotropy, and applies a consistent use of these properties for in silico design and the application of dental implants. Results show the advantages of this approach in analysis and visualization of stress and strain components with potential translation to dental implantology.
Collapse
Affiliation(s)
- Michael Gasik
- School of Chemical Engineering, Aalto University Foundation, 02150 Espoo, Finland
- Correspondence:
| | - France Lambert
- Dental Biomaterials Research Unit, University of Liege, 4000 Liège, Belgium; (F.L.); (M.B.)
| | - Miljana Bacevic
- Dental Biomaterials Research Unit, University of Liege, 4000 Liège, Belgium; (F.L.); (M.B.)
| |
Collapse
|
8
|
Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate. Acta Biomater 2021; 121:303-315. [PMID: 33227488 DOI: 10.1016/j.actbio.2020.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022]
Abstract
Although it has been repeatedly indicated the importance to develop implantable devices and cell culture substrates with tissue-specific rigidity, current commercially available products, in particular cell culture substrates, have rigidity values well above most tissues in the body. Herein, six resorbable polyester films were fabricated using compression moulding with a thermal presser into films with tailored stiffness by appropriately selecting the ratio of their building up monomers (e.g. lactide, glycolide, trimethylene carbonate, dioxanone, ε-caprolactone). Typical NMR and FTIR spectra were obtained, suggesting that the fabrication process did not have a negative effect on the conformation of the polymers. Surface roughness analysis revealed no apparent differences between the films as a function of polymer composition. Subject to polymer composition, polymeric films were obtained with glass transition temperatures from -52 °C to 61 °C; contact angles in water from 81 ° to 94 °; storage modulus from 108 MPa to 2,756 MPa and loss modulus from 8 MPa to 507 MPa (both in wet state, at 1 Hz frequency and at 37 °C); ultimate tensile strength from 8 MPa to 62 MPa, toughness from 23 MJ/m3 to 287 MJ/m3, strain at break from 3 % to 278 %, macro-scale Young's modulus from 110 MPa to 2,184 MPa (all in wet state); and nano-scale Young's modulus from 6 kPa to 15,019 kPa (in wet state). With respect to in vitro degradation in phosphate buffered saline at 37 °C, some polymeric films [e.g. poly(glycolide-lactide) 30 / 70] started degrading from day 7 (shortest timepoint assessed), whilst others [e.g. poly(glycolide-co-ε-caprolactone) 10 / 90] were more resilient to degradation up to day 21 (longest timepoint assessed). In vitro biological analysis using human dermal fibroblasts and a human monocyte cell line (THP-1) showed the potential of the polymeric films to support cell growth and controlled immune response. Evidently, the selected polymers exhibited properties suitable for a range of clinical indications.
Collapse
|
9
|
Biomechanical Features of Graphene-Augmented Inorganic Nanofibrous Scaffolds and Their Physical Interaction with Viruses. MATERIALS 2020; 14:ma14010164. [PMID: 33396467 PMCID: PMC7794948 DOI: 10.3390/ma14010164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Nanofibrous substrates and scaffolds are widely being studied as matrices for 3D cell cultures, and disease models as well as for analytics and diagnostic purposes. These scaffolds usually comprise randomly oriented fibers. Much less common are nanofibrous scaffolds made of stiff inorganic materials such as alumina. Well-aligned matrices are a promising tool for evaluation of behavior of biological objects affected by micro/nano-topologies as well as anisotropy. In this work, for the first time, we report a joint analysis of biomechanical properties of new ultra-anisotropic, self-aligned ceramic nanofibers augmented with two modifications of graphene shells (GAIN scaffolds) and their interaction of three different viral types (influenza virus A, picornavirus (human parechovirus) and potato virus). It was discovered that nano-topology and structure of the graphene layers have a significant implication on mechanical properties of GAIN scaffolds resulting in non-linear behavior. It was demonstrated that the viral adhesion to GAIN scaffolds is likely to be guided by physical cues in dependence on mutual steric factors, as the scaffolds lack common cell membrane proteins and receptors which viruses usually deploy for transfection. The study may have implications for selective viral adsorption, infected cells analysis, and potentially opening new tools for anti-viral drugs development.
Collapse
|
10
|
Salonius E, Kontturi L, Laitinen A, Haaparanta AM, Korhonen M, Nystedt J, Kiviranta I, Muhonen V. Chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells in a three-dimensional environment. J Cell Physiol 2019; 235:3497-3507. [PMID: 31552691 DOI: 10.1002/jcp.29238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.
Collapse
Affiliation(s)
- Eve Salonius
- Department of Orthopaedics and Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| | - Leena Kontturi
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Anita Laitinen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Anne-Marie Haaparanta
- Department of Electronics and Communications Engineering, Tampere University of Technology and BioMediTech, Tampere, Finland
| | - Matti Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Johanna Nystedt
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, Clinicum, University of Helsinki, Helsinki, Finland.,Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Ungemach M, Doll T, Vrana NE. How to Predict Adverse Immune Reactions to Implantable Biomaterials? Eur J Immunol 2019; 49:517-520. [DOI: 10.1002/eji.201970045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Melanie Ungemach
- Steinbeis 2i GmbH Steinhaeuserstrasse 12 76135 Karlsruhe Germany
| | - Timo Doll
- Steinbeis 2i GmbH Steinhaeuserstrasse 12 76135 Karlsruhe Germany
| | - Nihal Engin Vrana
- Protip Medical8 Place de l'Hopital Strasbourg France
- INSERM UMR 1121 “Biomaterials and Bioengineering 11 Rue Humann 67085 Strasbourg France
| |
Collapse
|