1
|
Le T, Chiang Y, Hui Y, Le T, Tzeng Y, Sharma N, Chiang W, Hsiao W. In vitroBioimaging of Fluorescent Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:95-127. [DOI: 10.1002/9781394202164.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
2
|
Ferdinandus, Suzuki M, Vu CQ, Harada Y, Sarker SR, Ishiwata S, Kitaguchi T, Arai S. Modulation of Local Cellular Activities using a Photothermal Dye-Based Subcellular-Sized Heat Spot. ACS NANO 2022; 16:9004-9018. [PMID: 35675905 PMCID: PMC9245347 DOI: 10.1021/acsnano.2c00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/19/2022] [Indexed: 08/25/2023]
Abstract
Thermal engineering at the microscale, such as the regulation and precise evaluation of the temperature within cellular environments, is a major challenge for basic biological research and biomaterials development. We engineered a polymeric nanoparticle having a fluorescent temperature sensory dye and a photothermal dye embedded in the polymer matrix, named nanoheater-thermometer (nanoHT). When nanoHT is illuminated with a near-infrared laser at 808 nm, a subcellular-sized heat spot is generated in a live cell. Fluorescence thermometry allows the temperature increment to be read out concurrently at individual heat spots. Within a few seconds of an increase in temperature by approximately 11.4 °C from the base temperature (37 °C), we observed the death of HeLa cells. The cell death was observed to be triggered from the exact local heat spot at the subcellular level under the fluorescence microscope. Furthermore, we demonstrate the application of nanoHT for the induction of muscle contraction in C2C12 myotubes by heat release. We successfully showed heat-induced contraction to occur in a limited area of a single myotube based on the alteration of protein-protein interactions related to the contraction event. These results demonstrate that even a single heat spot provided by a photothermal material can be extremely effective in altering cellular functions.
Collapse
Affiliation(s)
- Ferdinandus
- Waseda
Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
| | - Madoka Suzuki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Cong Quang Vu
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Center
for Quantum Information and Quantum Biology, Osaka University, Osaka 565-0871, Japan
| | - Satya Ranjan Sarker
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shin’ichi Ishiwata
- Department
of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsuya Kitaguchi
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Satoshi Arai
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
3
|
Ruan H, Zhou L. Synthesis of Fluorescent Sulfur Quantum Dots for Bioimaging and Biosensing. Front Bioeng Biotechnol 2022; 10:909727. [PMID: 35651550 PMCID: PMC9149076 DOI: 10.3389/fbioe.2022.909727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 01/26/2023] Open
Abstract
The rapid industrialization has had a serious impact on the environment, leading to an increase in disease and healthcare problems. The development of simple and effective biosensors to achieve specific analyte detection and bioimaging can provide useful information for disease prevention and treatment. Sulfur quantum dots (SQDs), a new class of metal-free fluorescent nanomaterial, are being studied and applied in diagnostic fields such as bioimaging and biosensing due to their advantages of simple synthetic process, unique composition, ultrasmall size, adjustable fluorescence, and low toxicity. This minireview highlights the main synthetic methods to synthesize fluorescent SQDs and their recent progress in cell and tissue imaging, as well as detection of biomolecules, metal ions, and temperature. Finally, the future development and some critical challenges of SQDs as a fluorescent probe in the field of bioimaging and biosensing are also discussed.
Collapse
|
4
|
Ma L, Lu Y, Li Y, Yang Z, Mao Y, Wang Y, Man S. A novel halogenated adenosine analog 5'-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol Appl Pharmacol 2021; 436:115857. [PMID: 34979143 DOI: 10.1016/j.taap.2021.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Adenosine, as a naturally occurring nucleoside, plays an important role in human health maintenance. In recent years, many studies have shown that adenosine has the effect of cancer inhibition, and some of its analogs have been successfully marketed as anticancer drugs. This report mainly describes the anti-colon cancer activities and mechanism of a novel halogenated adenosine analog named 5'-bromodeoxyadenosine (5'-BrDA). As a result, 5'-BrDA concentration-dependently inhibited colon cancer cells proliferation, induced autophagy without disruption of lysosomal stability, and promoted autophagy-independently cellular mitochondrial apoptosis by increasing the accumulation of reactive oxygen species. Furthermore, 5'-BrDA inhibited the tumor growth of colon cancer in CT26 inbred mice without affecting the body weight in vivo. Collectively, the above-mentioned mechanisms contributed to the anticancer activity of 5'-BrDA. It is rare to discover novel anticancer adenosine analogs during the past couple of decades. We believe that our work will enrich the understanding of adenosine analogs, also, pave the way for adenosine analogs product based anticancer drug development.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaqin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhizhen Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|