1
|
Basak C, Chakraborty R. Effect of Hypoxia on the Gut Microflora of a Facultative Air-Breathing Loach Lepidocephalichthys guntea. Curr Microbiol 2024; 81:406. [PMID: 39402241 DOI: 10.1007/s00284-024-03924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
One of the main risks to fish health in an aquatic environment is hypoxia, which can either lead to respiratory failure or the emergence of various diseases in a fish population. This investigation examined the impact of hypoxia on the gut bacteria of a loach, Lepidocephalichthys guntea, which under the dissolve oxygen stress can gulp air from surface and breathe using its posterior intestine. High-throughput sequencing was used to examine the anterior and posterior parts of the gut of L. guntea during both normoxia and hypoxia. According to the community profiling of the gut bacteria, prolonged exposure to hypoxia increased the diversity and abundance of bacteria in the posterior part while decreasing both in the anterior part of the gut. Additionally, for both parts of the gut, the core microbiota showed a significant alteration during hypoxia. In correlation network analysis, a more interactive and intricate network was developed at normoxia. According to the comparative analyses of the gut bacteria, hypoxia causes more pronounced alterations in the posterior gut than the anterior gut at various taxonomic levels. As a consequence of hypoxia, several genera like Aeromonas, Pseudomonas, Plesiomonas, Acinetobacter, and Enterobacter were replaced by Streptococcus, Escherichia-Shigella, Janthinobacterium, and Clostridia. A surge in probiotic genera, including Bifidobacterium, Lactobacillus, Blautia, and Cetobacterium, was also seen. The fatty acid biosynthesis pathway was induced only in hypoxia, although all other metabolic pathways were present in both situations, albeit with fewer hits in hypoxia.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
2
|
Yu C, Zhao J, Cheng F, Chen J, Chen J, Xu H, Shi K, Xia K, Ding S, Wang K, Wang R, Chen Y, Li Y, Li H, Chen Q, Yu X, Shao F, Liang C, Li F. Silencing circATXN1 in Aging Nucleus Pulposus Cell Alleviates Intervertebral Disc Degeneration via Correcting Progerin Mislocalization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0336. [PMID: 38533181 PMCID: PMC10964222 DOI: 10.34133/research.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jing Zhao
- Department of Chemistry,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jiangjie Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jinyang Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Haibin Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Siwen Ding
- Westlake Street Community Health Service Center, Hangzhou 310009, Zhejiang, PR China
| | - Kanbin Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Ronghao Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yazhou Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yi Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Hao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Xiaohua Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute,
Zhejiang University, Haining 314400, Zhejiang, PR China
- Biomedical and Health Translational Research Centre,
Zhejiang University, Haining 314400, Zhejiang, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| |
Collapse
|
3
|
Yin X, Vesvoranan O, Andreopoulos F, Dauer EA, Gu W, Huang CYC. Analysis of Extracellular ATP Distribution in the Intervertebral Disc. Ann Biomed Eng 2024; 52:542-555. [PMID: 37934317 DOI: 10.1007/s10439-023-03398-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Progressive loss of proteoglycans (PGs) is the major biochemical change during intervertebral disc (IVD) degeneration. Adenosine triphosphate (ATP) as the primary energy source is not only critical for cell survival but also serves as a building block in PG synthesis. Extracellular ATP can mediate a variety of physiological functions and was shown to promote extracellular matrix (ECM) production in the IVD. Therefore, the objective of this study was to develop a 3D finite element model to predict extracellular ATP distribution in the IVD and evaluate the impact of degeneration on extracellular ATP distribution. A novel 3D finite element model of the IVD was developed by incorporating experimental measurements of ATP metabolism and ATP-PG binding kinetics into the mechano-electrochemical mixture theory. The new model was validated by experimental data of porcine IVD, and then used to analyze the extracellular distribution of ATP in human IVDs. Extracellular ATP was shown to bind specifically with PGs in IVD ECM. It was found that annulus fibrosus cells hydrolyze ATP faster than that of nucleus pulposus (NP) cells whereas NP cells exhibited a higher ATP release. The distribution of extracellular ATP in a porcine model was consistent with experimental data in our previous study. The predictions from a human IVD model showed a high accumulation of extracellular ATP in the NP region, whereas the extracellular ATP level was reduced with tissue degeneration. This study provides an understanding of extracellular ATP metabolism and its potential biological influences on the IVD via purinergic signaling.
Collapse
Affiliation(s)
- Xue Yin
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Oraya Vesvoranan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Edward A Dauer
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Weiyong Gu
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - C-Y Charles Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL, 33124-0621, USA.
| |
Collapse
|
4
|
McDonnell EE, Wilson N, Barcellona MN, Ní Néill T, Bagnall J, Brama PAJ, Cunniffe GM, Darwish SL, Butler JS, Buckley CT. Preclinical to clinical translation for intervertebral disc repair: Effects of species-specific scale, metabolism, and matrix synthesis rates on cell-based regeneration. JOR Spine 2023; 6:e1279. [PMID: 37780829 PMCID: PMC10540833 DOI: 10.1002/jsp2.1279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Jessica Bagnall
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Pieter A. J. Brama
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Gráinne M. Cunniffe
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- National Orthopaedic HospitalDublinIreland
- St Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
5
|
Jia Y, Wang F, Gao Y, Qin H, Guan C. Hypoxia stress induces hepatic antioxidant activity and apoptosis, but stimulates immune response and immune-related gene expression in black rockfish Sebastes schlegelii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106502. [PMID: 36965427 DOI: 10.1016/j.aquatox.2023.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Dissolved oxygen concentrations both in the open ocean and coast have been declining due to the interaction of global climate change and human activity. Fish have evolved different adaptative strategies to cope with possibly damage induced by hypoxic environments. Black rockfish as important economic fish widely reared in the offshore sea cage, whereas related physiological response subject to hypoxia stress remained unclear. In this study, hepatic anti-oxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]), aminotransferase (AST) and alanine aminotransferase (ALT) activities, lipid peroxidation (LPO), malondialdehyde (MDA) and glutathione (GSH) content, immunological parameters and the expression of apoptosis (bax, bcl2, p53, caspase3, xiap) and immune-related genes (c3, il-1β, ccl25, saa, hap, isg15) of black rockfish were determined during hypoxia and reoxygenation to illustrate the underlying defense response mechanisms. Results showed that hypoxia stress remarkably increased hepatic LPO and MDA content, AST and ALT activity and proportion of pyknotic nucleus. Hepatic SOD, CAT and GSH-Px activity manifested similar results, whereas GSH levels significantly decreased under hypoxia stress. The apoptosis rate of hepatocyte increased during hypoxia stress and reoxygenation. Meanwhile, p53, caspase3, bax and xiap mRNAs and bax/bcl2 rations were significantly up-regulated under hypoxia stress. However, bcl2 mRNA was significantly down-regulated. Interestingly, hypoxia stress significantly increased NBT-positive cell percent, phagocytic index, respiratory burst and ACH50 activity, and lysozyme activity. The mRNA levels of c3, ilβ, ccl25, saa, hap and isg15 were significantly up-regulated in the liver, spleen and head-kidney under hypoxia stress. The above parameters recovered to normal status after reoxygenation for 24 h Thus, hypoxia stress impairs hepatic antioxidant capacity, induces oxidative damage and apoptosis via the xiap-p53-bax-bcl2 and the caspase-dependent pathways, but enhances host immunity by regulating nonspecific immune indices and related genes expression to maintain homeostasis in black rockfish. These findings will help fully understand the hypoxia tolerance mechanisms of black rockfish and provide more data for offshore open ocean farming.
Collapse
Affiliation(s)
- Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Fenglin Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Changtao Guan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Li J, Li Y, Liang X, Yang Z, Peng Y, Zhang Y, Ning X, Zhang K, Ji J, Wang T, Zhang G, Yin S. Blood redistribution preferentially protects vital organs under hypoxic stress in Pelteobagrus vachelli. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106498. [PMID: 37001201 DOI: 10.1016/j.aquatox.2023.106498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Blood redistribution occurs in mammals under hypoxia but has not been reported in fish. This study investigated the tissue damage, hypoxia-inducible factor (HIF) activation level, and blood flow changes in the brain, liver, and muscle of Pelteobagrus vachelli during the hypoxia process for normoxia-hypoxia-asphyxia. The results showed that P. vachelli has tissue specificity in response to hypoxic stress. Cerebral blood flow increased with less damage than in the liver and muscle, suggesting that P. vachelli may also have a blood redistribution mechanism in response to hypoxia. It is worth noting that severe hypoxia can lead to a sudden increase in the degree of brain tissue damage. In addition, higher dissolved oxygen levels activate HIF and may have contributed to the reduced damage observed in the brain. This study provides basic data for investigating hypoxic stress in fish.
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Yao Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xia Liang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China
| | - Zhiru Yang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Ye Peng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Yiran Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Guosong Zhang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
7
|
Injectable Cell-Laden Nanofibrous Matrix for Treating Annulus Fibrosus Defects in Porcine Model: An Organ Culture Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111866. [PMID: 36431001 PMCID: PMC9694927 DOI: 10.3390/life12111866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Lower back pain commonly arises from intervertebral disc (IVD) failure, often caused by deteriorating annulus fibrosus (AF) and/or nucleus pulposus (NP) tissue. High socioeconomic cost, quality of life issues, and unsatisfactory surgical options motivate the rapid development of non-invasive, regenerative repair strategies for lower back pain. This study aims to evaluate the AF regenerative capacity of injectable matrix repair strategy in ex vivo porcine organ culturing using collagen type-I and polycaprolactone nanofibers (PNCOL) with encapsulated fibroblast cells. Upon 14 days organ culturing, the porcine IVDs were assessed using gross optical imaging, magnetic resonance imaging (MRI), histological analysis, and Reverse Transcriptase quantitative PCR (RT-qPCR) to determine the regenerative capabilities of the PNCOL matrix at the AF injury. PNCOL-treated AF defects demonstrated a full recovery with increased gene expressions of AF extracellular matrix markers, including Collagen-I, Aggrecan, Scleraxis, and Tenascin, along with anti-inflammatory markers such as CD206 and IL10. The PNCOL treatment effectively regenerates the AF tissue at the injury site contributing to decreased herniation risk and improved surgical outcomes, thus providing effective non-invasive strategies for treating IVD injuries.
Collapse
|
8
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
9
|
McDonnell EE, Buckley CT. Two- and three-dimensional in vitro nucleus pulposus cultures: An in silico analysis of local nutrient microenvironments. JOR Spine 2022; 5:e1222. [PMID: 36203867 PMCID: PMC9520769 DOI: 10.1002/jsp2.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background It is well established that the unique biochemical microenvironment of the intervertebral disc plays a predominant role in cell viability and biosynthesis. However, unless the effect of microenvironmental conditions is primary to a study objective, in vitro culture parameters that are critical for reproducibility are both varied and not routinely reported. Aims This work aims to investigate the local microenvironments of commonly used culture configurations, highlighting physiological relevance, potential discrepancies, and elucidating possible heterogeneity across the research field. Materials and Methods This work uses nutrient-transport in silico models to reflect on the effect of often underappreciated parameters, such as culture geometry and diffusional distance (vessel, media volume, construct size), seeding density, and external boundary conditions on the local microenvironment of two-dimensional (2D) and three-dimensional (3D) in vitro culture systems. Results We elucidate important discrepancies between the external boundary conditions such as the incubator level or media concentrations and the actual local cellular concentrations. Oxygen concentration and cell seeding density were found to be highly influential parameters and require utmost consideration when utilizing 3D culture systems. Discussion This work highlights that large variations in the local nutrient microenvironment can easily be established without consideration of several key parameters. Without careful deliberation of the microenvironment within each specific and unique system, there is the potential to confound in vitro results leading to heterogeneous results across the research field in terms of biosynthesis and matrix composition. Conclusion Overall, this calls for a greater appreciation of key parameters when designing in vitro experiments. Better harmony and standardization of physiologically relevant local microenvironments are needed to push toward reproducibility and successful translation of findings across the research field.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
10
|
Electrical Stimulation-Mediated Tissue Healing in Porcine Intervertebral Disc Under Mechanically Dynamic Organ Culture Conditions. Spine (Phila Pa 1976) 2022; 47:764-772. [PMID: 35102117 DOI: 10.1097/brs.0000000000004331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Porcine intervertebral discs (IVDs) were excised and then drilled to simulate degeneration before being electrically stimulated for 21 days while undergoing mechanical loading. The discs were then analyzed for gene expression and morphology to assess regeneration. OBJECTIVE The purpose of this study was to investigate the effectiveness of the electrical stimulation of IVD treatment as an early intervention method in halting the progression of degenerative disc disease using an ex-vivo porcine model. SUMMARY OF BACKGROUND DATA Treatments for degenerative disc disease are limited in their efficacy and tend to treat the symptoms of the disease rather than repairing the degenerated disc itself. There is a dire need for an early intervention treatment that not only halts the progression of the disease but contributes to reviving the degenerated disc. METHODS Lumbar IVDs were extracted from a mature pig within 1 hour of death and were drilled with a 1.5 mm bit to simulate degenerative disc disease. Four IVDs at a time were then cultured in a dynamic bioreactor system under mechanical loading for 21 days, two with and two without the electrical stimulation treatment. The IVDs were assessed using histological analysis, magnetic resonance imaging, and quantitative reverse transcriptase polymerase chain reaction to quantify the effectiveness of the treatment on the degenerated discs. RESULTS IVDs with electrical stimulation treatment exhibited extensive annular regeneration and prevented herniation of the nucleus pulposus (NP). In contrast, the untreated group of IVDs were unable to maintain tissue integrity and exhibited NP herniation through multiple layers of the annulus fibrosus. Gene expression showed an increase of extracellular matrix markers and antiinflammatory cytokine interleukin-4 (IL-4), while decreasing in pro-inflammatory markers and pain markers in electrically stimulated IVDs when compared to the untreated group. CONCLUSION The direct electrical stimulation application in NP of damaged IVDs can be a viable option to regenerate damaged NP and annulus fibrosus tissues.
Collapse
|
11
|
Zhong H, Yang C, Gao Y, Cao P, Tian Y, Shen X, Wang R, Xu C, Chen H, Yuan W. PERK signaling activation restores nucleus pulposus degeneration by activating autophagy under hypoxia environment. Osteoarthritis Cartilage 2022; 30:341-353. [PMID: 34767959 DOI: 10.1016/j.joca.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Intervertebral disc (IVD) degeneration is an important disease with no efficient biological therapy identified. Autophagy, a wildly known therapeutic target for human disease, has been demonstrated to be activated under hypoxia, with underlying mechanism remains elusive. Thus, this study aims to specify the role of autophagy in IVD degeneration, the regulating mechanism of hypoxia-inducing autophagy, and the therapeutic value of autophagy for IVD degeneration. METHODS RNA-seq was used to screen the primary pathway affected in NP cells under hypoxia, the specific link between hypoxia and autophagy were investigated using ChIP-seq and dual luciferase reporter assay. Conditional ATG7 knockout mice (ATG7-/-) were constructed for assessing the effect of autophagy on IVD degeneration, and puncture induced mice model of IVD degeneration were used for intradiscal injection to evaluate the therapeutic value of autophagy. RESULTS We demonstrated that hypoxia induces autophagy by transcriptional activation of autophagic gene LC3B and ATG7, which is controlled by PERK signaling. Then, we observed that inhibiting autophagy or PERK signaling leads to impaired NP cell viability and function, furthermore, using ATG7 knockout (ATG7-/-) mice, we identified the protective role of autophagy in IVD. Furthermore, we found that intradiscal injection of PERK signaling agonist, CCT020312, significantly restores the degeneration level of needle punctured mice IVD. CONCLUSION We showed that the activation of PERK signaling upon hypoxia serves as a vital mechanism to induce autophagy and identified the therapeutic value of PERK signaling agonist for IVD degeneration treatment.
Collapse
Affiliation(s)
- H Zhong
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - C Yang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Y Gao
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, China
| | - P Cao
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Y Tian
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - X Shen
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - R Wang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - C Xu
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - H Chen
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - W Yuan
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Xu Z, Zheng J, Zhang Y, Wu H, Sun B, Zhang K, Wang J, Zang F, Zhang X, Guo L, Wu X. Increased Expression of Integrin Alpha 6 in Nucleus Pulposus Cells in Response to High Oxygen Tension Protects against Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8632823. [PMID: 34707783 PMCID: PMC8545551 DOI: 10.1155/2021/8632823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
The destruction of the low oxygen microenvironment in nucleus pulposus (NP) cells played a critical role in the pathogenesis of intervertebral disc degeneration (IVDD). The purpose of this study was to determine the potential role of integrin alpha 6 (ITG α6) in NP cells in response to high oxygen tension (HOT) in IVDD. Immunofluorescence staining and western blot analysis showed that the levels of ITG α6 expression were increased in the NP tissue from IVDD patients and the IVDD rat model with mild degeneration, which were reduced as the degree of degeneration increases in severity. In NP cells, the treatment of HOT resulted in upregulation of ITG α6 expression, which could be alleviated by blocking the PI3K/AKT signaling pathway. Further studies found that ITG α6 could protect NP cells against HOT-induced apoptosis and oxidative stress and protect NP cells from HOT-inhibited ECM protein synthesis. Upregulation of ITG α6 expression by HOT contributed to maintaining NP tissue homeostasis through the interaction with hypoxia-inducible factor-1α (HIF-1α). Furthermore, silencing of ITG α6 in vivo could obviously accelerate puncture-induced IVDD. Taken together, these results revealed that the increase of ITG α6 expression by HOT in NP cells might be a protective factor in IVD degeneration as well as restore NP cell function.
Collapse
Affiliation(s)
- Zeng Xu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Jiancheng Zheng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ying Zhang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Huiqiao Wu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Bin Sun
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Ke Zhang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Jianxi Wang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Fazhi Zang
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| | - Xingkai Zhang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xiaodong Wu
- Department of Orthopedics, Changzheng Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Lakstins K, Yeater T, Arnold L, Khan S, Hoyland JA, Purmessur D. Investigating the role of culture conditions on hypertrophic differentiation in human cartilage endplate cells. J Orthop Res 2021; 39:1204-1216. [PMID: 32285966 DOI: 10.1002/jor.24692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 03/28/2020] [Indexed: 02/04/2023]
Abstract
Cartilage endplate degeneration/calcification has been linked to the onset and progression of intervertebral disc degeneration and there is a critical need to understand mechanisms, such as hypertrophic differentiation, of cartilage endplate degeneration/calcification to inform treatment strategies for discogenic back pain. In vitro cell culture conditions capable of inducing hypertrophic differentiation are used to study pathophysiological mechanisms in articular chondrocytes, but culture conditions capable of inducing a hypertrophic cartilage endplate cell phenotype have yet to be explored. The goal of this study was to investigate the role of culture conditions capable of inducing hypertrophic differentiation in articular chondrocytes on hypertrophic differentiation in human cartilage endplate cells. Isolated human cartilage endplate cells were cultured as pellets for 21 days at either 5% O2 (physiologic for cartilage) or 20.7% O2 (hyperoxic) and treated with 10% fetal bovine serum or Wnt agonist, two stimuli used to induce hypertrophic differentiation in articular chondrocytes. Cartilage endplate cells did not exhibit a hypertrophic cell morphology in response to fetal bovine serum or Wnt agonist but did display other hallmarks of chondrocyte hypertrophy and degeneration such as hypertrophic gene and protein expression, and a decrease in healthy proteoglycans and an increase in fibrous collagen accumulation. These findings demonstrate that cartilage endplate cells take on a degenerative phenotype in response to hypertrophic stimuli in vitro, but do not undergo classical changes in morphology associated with hypertrophic differentiation regardless of oxygen levels, highlighting potential differences in the response of cartilage endplate cells versus articular chondrocytes to the same stimuli.
Collapse
Affiliation(s)
- Katherine Lakstins
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Taylor Yeater
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lauren Arnold
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Safdar Khan
- Department of Orthopedics, The Ohio State University, Columbus, Ohio
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, School of Biological Sciences, Manchester, UK
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio.,Department of Orthopedics, The Ohio State University, Columbus, Ohio
| |
Collapse
|