1
|
Orsy G, Shahmohammadi S, Forró E. A Sustainable Green Enzymatic Method for Amide Bond Formation. Molecules 2023; 28:5706. [PMID: 37570676 PMCID: PMC10419938 DOI: 10.3390/molecules28155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A sustainable enzymatic strategy for the preparation of amides by using Candida antarctica lipase B as the biocatalyst and cyclopentyl methyl ether as a green and safe solvent was devised. The method is simple and efficient and it produces amides with excellent conversions and yields without the need for intensive purification steps. The scope of the reaction was extended to the preparation of 28 diverse amides using four different free carboxylic acids and seven primary and secondary amines, including cyclic amines. This enzymatic methodology has the potential to become a green and industrially reliable process for direct amide synthesis.
Collapse
Affiliation(s)
- György Orsy
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (G.O.); (S.S.)
| | - Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (G.O.); (S.S.)
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (G.O.); (S.S.)
| |
Collapse
|
2
|
Godoy CA, Pardo-Tamayo JS, Barbosa O. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Int J Mol Sci 2022; 23:9933. [PMID: 36077332 PMCID: PMC9456414 DOI: 10.3390/ijms23179933] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Processes involving lipases in obtaining active pharmaceutical ingredients (APIs) are crucial to increase the sustainability of the industry. Despite their lower production cost, microbial lipases are striking for their versatile catalyzing reactions beyond their physiological role. In the context of taking advantage of microbial lipases in reactions for the synthesis of API building blocks, this review focuses on: (i) the structural origins of the catalytic properties of microbial lipases, including the results of techniques such as single particle monitoring (SPT) and the description of its selectivity beyond the Kazlauskas rule as the "Mirror-Image Packing" or the "Key Region(s) rule influencing enantioselectivity" (KRIE); (ii) immobilization methods given the conferred operative advantages in industrial applications and their modulating capacity of lipase properties; and (iii) a comprehensive description of microbial lipases use as a conventional or promiscuous catalyst in key reactions in the organic synthesis (Knoevenagel condensation, Morita-Baylis-Hillman (MBH) reactions, Markovnikov additions, Baeyer-Villiger oxidation, racemization, among others). Finally, this review will also focus on a research perspective necessary to increase microbial lipases application development towards a greener industry.
Collapse
Affiliation(s)
- César A. Godoy
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Juan S. Pardo-Tamayo
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Oveimar Barbosa
- Grupo de Investigación de Materiales Porosos (GIMPOAT), Departamento de Química, Universidad del Tolima, Ibague 730001, Colombia
| |
Collapse
|
3
|
de Oliveira FR, da Silva NM, Hamoy M, Crespo-López ME, Ferreira IM, da Silva EO, de Matos Macchi B, do Nascimento JLM. The GABAergic System and Endocannabinoids in Epilepsy and Seizures: What Can We Expect from Plant Oils? Molecules 2022; 27:molecules27113595. [PMID: 35684543 PMCID: PMC9182121 DOI: 10.3390/molecules27113595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Seizures and epilepsy are some of the most common serious neurological disorders, with approximately 80% of patients living in developing/underdeveloped countries. However, about one in three patients do not respond to currently available pharmacological treatments, indicating the need for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory system of the brain and has a central role in seizures and the screening of new ACD candidates. It has been demonstrated that the action of agents on endocannabinoid receptors modulates the balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an important source of plant oils that can be used for the synthesis of new fatty acid amides, which are compounds analogous to endocannabinoids. The synthesis of such compounds represents an important approach for the development of new anticonvulsant therapies.
Collapse
Affiliation(s)
- Fábio Rodrigues de Oliveira
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Controle de Qualidade e Bromatologia, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Nágila Monteiro da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Moisés Hamoy
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - Maria Elena Crespo-López
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Irlon Maciel Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá 68902-280, Brazil
| | - Edilene Oliveira da Silva
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratorio de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INCT-INBEB), Rio de Janeiro 21941-590, Brazil
| | - Barbarella de Matos Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - José Luiz Martins do Nascimento
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (F.R.d.O.); (N.M.d.S.); (E.O.d.S.)
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68902-280, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
- Correspondence:
| |
Collapse
|
4
|
Enantioselective Chromatographic Separation and Lipase Catalyzed Asymmetric Resolution of Biologically Important Chiral Amines. SEPARATIONS 2021. [DOI: 10.3390/separations8100165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyanoacetamides are vital synthons in synthetic organic chemistry. However, methods to enantiopure cyanoacetamides have not yet been well explored. In this work, the preparation of cyanoacetamide synthons RS-(1a–4a) or methoxyacetamides RS-(1b–4b) in enantiopure/enriched form was investigated. Compounds S-1, S-2, R-1b, R-1a, andR-2b were prepared in enantiopure form (ee > 99%) while compounds S-4, R-2a, and R-4a were achieved in ee 9%, 80%, and 76%, respectively. Many baselines enantioselective HPLC separations of amines 1–4, their cyanoacetamides (1a–4a), and methoxyacetamides (1b–4b) were achieved by utilizing diverse mobile-phase compositions and two cellulose-based CSPs (ODH® and LUX-3® columns). Such enantioselective HPLC separations were used to monitor the lipase-catalyzed kinetic resolution of amines RS-(1–4).
Collapse
|
5
|
Estrada-Valenzuela D, Ramos-Sánchez VH, Zaragoza-Galán G, Espinoza-Hicks JC, Bugarin A, Chávez-Flores D. Lipase Assisted ( S)-Ketoprofen Resolution from Commercially Available Racemic Mixture. Pharmaceuticals (Basel) 2021; 14:ph14100996. [PMID: 34681221 PMCID: PMC8541352 DOI: 10.3390/ph14100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ketoprofen is a commercially available drug sold as a racemic mixture that belongs to the family of non-steroidal anti-inflammatory drugs known as profens. It has been demonstrated (in vitro) that (S)-ketoprofen is around 160 times more potent than its enantiomer (R)-ketoprofen, while accumulation of (R)-ketoprofen can cause serious side effects, such as dyspepsia, gastrointestinal ulceration/bleeding, pain, salt and fluid retention, and hypertension. In this work, four commercially available lipases were systematically assessed. Parameters such as conversion, enantiomeric excess, and enantioselectivity were considered. Among them, and by evaluating lipase load, temperature, solvent, and alcohol, Candida rugosa lipase exhibited the best results in terms of enantioselectivity E = 185 ((S)-enantiopreference) with esterification conversions of c = 47% (out of 50%) and enantiomeric excess of 99%. The unreacted (R)-enantiomer was recovered by liquid-liquid extraction and racemized under basic media, which was recycled as starting material. Finally, the (S)-alkyl ketoprofen ester was successfully enzymatically hydrolyzed to the desired (S)-ketoprofen with c = 98.5% and 99% ee. This work demonstrated the benefit and efficiency of using Candida rugosa lipase to kinetically resolve racemic ketoprofen by an environmentally friendly protocol and with the recycling of the undesired (R)-ketoprofen.
Collapse
Affiliation(s)
- Daniela Estrada-Valenzuela
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Chihuahua 31125, Mexico; (D.E.-V.); (V.H.R.-S.); (G.Z.-G.); (J.C.E.-H.)
| | - Víctor H. Ramos-Sánchez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Chihuahua 31125, Mexico; (D.E.-V.); (V.H.R.-S.); (G.Z.-G.); (J.C.E.-H.)
| | - Gerardo Zaragoza-Galán
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Chihuahua 31125, Mexico; (D.E.-V.); (V.H.R.-S.); (G.Z.-G.); (J.C.E.-H.)
| | - Jose C. Espinoza-Hicks
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Chihuahua 31125, Mexico; (D.E.-V.); (V.H.R.-S.); (G.Z.-G.); (J.C.E.-H.)
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
- Correspondence: (A.B.); (D.C.-F.)
| | - David Chávez-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Chihuahua 31125, Mexico; (D.E.-V.); (V.H.R.-S.); (G.Z.-G.); (J.C.E.-H.)
- Correspondence: (A.B.); (D.C.-F.)
| |
Collapse
|
6
|
Liu C, Wang Y, Liu J, Chen A, Xu J, Zhang R, Wang F, Nie K, Deng L. One-Step Synthesis of 4-Octyl Itaconate through the Structure Control of Lipase. J Org Chem 2021; 86:7895-7903. [PMID: 34085515 DOI: 10.1021/acs.joc.0c02995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
4-Octyl itaconate is a novel antiviral and immunoregulatory small molecule showing great potential in the treatment of various autoimmune diseases and viral infections. It is difficult to selectively esterify the C4 carboxyl group of itaconate acid via one-step direct esterification using chemical catalysts, while the two-step route with itaconic anhydride as an intermediate is environmentally unfriendly and costly. This research investigated the one-step and green synthesis of 4-octyl itaconate through the structure control of lipase, obtaining 4-octyl itaconate with over 98% yield and over 99% selectivity. Multiscale molecular dynamics simulations were applied to investigate the reaction mechanism. The cavity pocket of lipases resulted in a 4-octyl itaconate selectivity by affecting distribution of substrates toward the catalytic site. Toluene could enhance monoesterification in the C4 carboxyl group and contribute to a nearly 100% conversion from itaconate acid into 4-octyl itaconate by adjusting the catalytic microenvironment around the lipase, producing a shrinkage effect on the channel.
Collapse
Affiliation(s)
- Changsheng Liu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Yilin Wang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Jiahao Liu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - An'nan Chen
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Juntao Xu
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Renwei Zhang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| | - Li Deng
- Beijing Bioprocess Key Laboratory and State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology (BUCT), Beijing 100029, P. R. China
| |
Collapse
|
7
|
Liu J, Tong S, Sun H, Chang Y, Luo H, Yu H, Shen Z. Effect of shaking speed on immobilization of cephalosporin C acylase: Correlation between protein distribution and properties of the immobilized enzymes. Biotechnol Prog 2020; 37:e3063. [PMID: 32776709 DOI: 10.1002/btpr.3063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/06/2022]
Abstract
During enzyme immobilization, enzyme activity and protein distribution are affected by various factors such as enzyme load, temperature, and pH. In general, two types of protein distribution patterns (heterogeneous or homogeneous) are observed inside a porous carrier, owing to differences in preparation parameters. During the immobilization of a fusion protein (CCApH) of cephalosporin C acylase (CCA) and pHluorin (a pH-sensitive mutant of green fluorescent protein), different shaking speeds induced obvious differences in protein distribution on an epoxy carrier, LX-1000EPC. Enzyme immobilization with a homogeneous distribution pattern was observed at a low shaking speed (120 rpm) with an operational stability of 10 batches at 37°C. The operational stability of an immobilisate with heterogeneous protein distribution prepared at a high shaking speed (200 rpm) was six batches. Given the pH-sensitive characteristics of pHluorin in the fusion protein, the intraparticle pH of CCApH immobilisates during catalysis was monitored using confocal laser scanning microscopy. The microenvironmental pH of the immobilisate with heterogeneous protein distribution sharply decreased by about 2 units; this decrease in the pH may be detrimental to the life-span of immobilized CCA. Thus, this work demonstrates the good operational stability of pH-sensitive proton-forming immobilized enzymes with homogeneous protein distribution.
Collapse
Affiliation(s)
- Jingran Liu
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Shuangming Tong
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, China
| | - Hui Luo
- Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhongyao Shen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|