1
|
Liu X, Bai Y, Zhou B, Yao W, Song S, Liu J, Zheng C. Recent advances in hepatocellular carcinoma-targeted nanoparticles. Biomed Mater 2024; 19:042004. [PMID: 38697209 DOI: 10.1088/1748-605x/ad46d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the field of medicine, we often brave the unknown like interstellar explorers, especially when confronting the formidable opponent of hepatocellular carcinoma (HCC). The global burden of HCC remains significant, with suboptimal treatment outcomes necessitating the urgent development of novel drugs and treatments. While various treatments for liver cancer, such as immunotherapy and targeted therapy, have emerged in recent years, improving their transport and therapeutic efficiency, controlling their targeting and release, and mitigating their adverse effects remains challenging. However, just as we grope through the darkness, a glimmer of light emerges-nanotechnology. Recently, nanotechnology has attracted attention because it can increase the local drug concentration in tumors, reduce systemic toxicity, and has the potential to enhance the effectiveness of precision therapy for HCC. However, there are also some challenges hindering the clinical translation of drug-loaded nanoparticles (NPs). Just as interstellar explorers must overcome interstellar dust, we too must overcome various obstacles. In future researches, the design and development of nanodelivery systems for novel drugs treating HCC should be the first attention. Moreover, researchers should focus on the active targeting design of various NPs. The combination of the interventional therapies and drug-loaded NPs will greatly advance the process of precision HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Binqian Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Wang L, Wang X, Chen F, Song YQ, Nao SC, Chan DSH, Wong CY, Wang W, Leung CH. A glycyrrhetinic acid-iridium(III) conjugate as a theranostic NIR probe for hepatocellular carcinoma with mitochondrial-targeting ability. Eur J Med Chem 2024; 264:115995. [PMID: 38043488 DOI: 10.1016/j.ejmech.2023.115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global mortality rates, but current treatment options have limitations. Advanced theranostics are needed to effectively integrate diagnosis and therapeutic of HCC. Glycyrrhetinic acid (GA) has abundant binding sites with glycyrrhetinic acid receptors (GA-Rs) on the surface of HCC cells and has also been reported to possess ligands with mitochondrial-targeting capability but with limited efficacy. Herein, we report a near-infrared (NIR) luminescent theranostic complex 1 through conjugating an iridium(III) complex to GA, which exhibits the desired photophysical properties and promotes mitochondrial-targeting capability. Complex 1 was selectively taken up by HepG2 liver cancer cells and was imaged within mitochondria with NIR emission. Complex 1 targeted mitochondria and opened mitochondrial permeability transition pores (MPTPs), resulting in ROS accumulation, mitochondrial damage, disruption of Bax/Bcl-2 equilibrium, and tumor cell apoptosis, resulting in significantly improved anticancer activity compared to GA. This work offers a methodology for developing multifunctional theranostic probes with amplified specificity and efficacy.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China.
| |
Collapse
|
3
|
Sivamaruthi BS, Kapoor DU, Kukkar RR, Gaur M, Elossaily GM, Prajapati BG, Chaiyasut C. Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimer's Disease, and Other Applications. Pharmaceutics 2023; 15:2666. [PMID: 38140007 PMCID: PMC10747102 DOI: 10.3390/pharmaceutics15122666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, many individuals struggle with Alzheimer's disease (AD), an unrelenting and incapacitating neurodegenerative condition. Despite notable research endeavors, effective remedies for AD remain constrained, prompting the exploration of innovative therapeutic avenues. Within this context, silica-based nanoplatforms have emerged with pronounced potential due to their unique attributes like expansive surface area, customizable pore dimensions, and compatibility with living systems. These nanoplatforms hold promise as prospective interventions for AD. This assessment provides a comprehensive overview encompassing various forms of mesoporous silica nanoparticles (MSNs), techniques for formulation, and their applications in biomedicine. A significant feature lies in their ability to precisely guide and control the transport of therapeutic agents to the brain, facilitated by the adaptability of these nanoplatforms as drug carriers. Their utility as tools for early detection and monitoring of AD is investigated. Challenges and prospects associated with harnessing MSNs are studied, underscoring the imperative of stringent safety evaluations and optimization of how they interact with the body. Additionally, the incorporation of multifunctional attributes like imaging and targeting components is emphasized to enhance their efficacy within the intricate milieu of AD. As the battle against the profound repercussions of AD persists, MSNs emerge as a promising avenue with the potential to propel the development of viable therapeutic interventions.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Devesh U. Kapoor
- Department of Pharmacy, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India;
| | - Rajiv R. Kukkar
- School of Pharmacy, Raffles University, Neemrana 301705, Rajasthan, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302033, Rajasthan, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, Duttaroy AK, Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives. Front Bioeng Biotechnol 2023; 11:1208547. [PMID: 37576994 PMCID: PMC10416113 DOI: 10.3389/fbioe.2023.1208547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
MicroRNAs (miRNAs) are short (18-25 nt), non-coding, widely conserved RNA molecules responsible for regulating gene expression via sequence-specific post-transcriptional mechanisms. Since the human miRNA transcriptome regulates the expression of a number of tumor suppressors and oncogenes, its dysregulation is associated with the clinical onset of different types of cancer. Despite the fact that numerous therapeutic approaches have been designed in recent years to treat cancer, the complexity of the disease manifested by each patient has prevented the development of a highly effective disease management strategy. However, over the past decade, artificial miRNAs (i.e., anti-miRNAs and miRNA mimics) have shown promising results against various cancer types; nevertheless, their targeted delivery could be challenging. Notably, numerous reports have shown that nanotechnology-based delivery of miRNAs can greatly contribute to hindering cancer initiation and development processes, representing an innovative disease-modifying strategy against cancer. Hence, in this review, we evaluate recently developed nanotechnology-based miRNA drug delivery systems for cancer therapeutics and discuss the potential challenges and future directions, such as the promising use of plant-made nanoparticles, phytochemical-mediated modulation of miRNAs, and nanozymes.
Collapse
Affiliation(s)
| | | | - Alma L. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro, México
| |
Collapse
|
5
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
7
|
Neves AR, Biswas S, Sousa Â, Costa D. Nanoconjugates and nanoconjugate formulations for improving drug delivery and therapeutic efficacy. ADVANCED NANOFORMULATIONS 2023:397-430. [DOI: 10.1016/b978-0-323-85785-7.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Jia W, Xu L, Xu W, Yang M, Zhang Y. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. NANOSCALE ADVANCES 2022; 4:1949-1961. [PMID: 36133408 PMCID: PMC9419146 DOI: 10.1039/d2na00020b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Acute pancreatitis (AP) is a common digestive system disease. The severity of AP ranges from mild edema in the pancreas to severe systemic inflammatory responses leading to peripancreatic/pancreatic necrosis, multi-organ failure and death. Improving the sensitivity of AP diagnosis and developing alternatives to traditional methods to treat AP have gained the attention of researchers. With the continuous rise of nanotechnology, it is being widely used in daily life, biomedicine, chemical energy and many other fields. Studies have demonstrated the effectiveness of nanotechnology in the diagnosis and treatment of AP. Nanotechnology has the advantages of simplicity, rapidity and sensitivity in detecting biomarkers of AP, as well as enhancing imaging, which helps in the early diagnosis of AP. On the other hand, nanoparticles (NPs) have oxidative stress inhibiting and anti-inflammatory effects, and can also be loaded with drugs as well as being used in anti-infection therapy, providing a new approach for the treatment of AP. In this article, we elaborate and summarize on the potential of nanoparticles for diagnostic and therapeutic applications in AP from the current reported literature and experimental results to provide useful guidelines for further research on the application of nanotechnology.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - LinFeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - YeWei Zhang
- Medical School, Southeast University Nanjing 210009 China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
9
|
Ladju RB, Ulhaq ZS, Soraya GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J Gastroenterol 2022; 28:176-187. [PMID: 35110943 PMCID: PMC8776531 DOI: 10.3748/wjg.v28.i2.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an epidemic burden and remains highly prevalent worldwide. The significant mortality rates of HCC are largely due to the tendency of late diagnosis and the multifaceted, complex nature of treatment. Meanwhile, current therapeutic modalities such as liver resection and transplantation are only effective for resolving early-stage HCC. Hence, alternative approaches are required to improve detection and enhance the efficacy of current treatment options. Nanotheranostic platforms, which utilize biocompatible nanoparticles to perform both diagnostics and targeted delivery, has been considered a potential approach for cancer management in the past few decades. Advancement of nanomaterials and biomedical engineering techniques has led to rapid expansion of the nanotheranostics field, allowing for more sensitive and specific diagnosis, real-time monitoring of drug delivery, and enhanced treatment efficacies across various malignancies. The focus of this review is on the applications of nanotheranostics for HCC. The review first explores the current epidemiology and the commonly encountered obstacles in HCC diagnosis and treatment. It then presents the current technological and functional advancements in nanotheranostic technology for cancer in general, and then specifically explores the use of nanotheranostic modalities as a promising option to address the key challenges present in HCC management.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Department of Anatomic Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University, Malang 65151, Indonesia
- National Research and Innovation Agency, Central Jakarta 10340, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
10
|
Sun Z, Shi Z, Xin Y, Zhao S, Jiang H, Wang D, Zhang L, Wang Z, Dai Y, Jiang H. Artificial Intelligent Multi-Modal Point-of-Care System for Predicting Response of Transarterial Chemoembolization in Hepatocellular Carcinoma. Front Bioeng Biotechnol 2021; 9:761548. [PMID: 34869272 PMCID: PMC8634755 DOI: 10.3389/fbioe.2021.761548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the second most lethal tumor globally and is the fourth leading cause of cancer-related death worldwide. Unfortunately, HCC is commonly at intermediate tumor stage or advanced tumor stage, in which only some palliative treatment can be used to offer a limited overall survival. Due to the high heterogeneity of the genetic, molecular, and histological levels, HCC makes the prediction of preoperative transarterial chemoembolization (TACE) efficacy and the development of personalized regimens challenging. In this study, a new multi-modal point-of-care system is employed to predict the response of TACE in HCC by a concept of integrating multi-modal large-scale data of clinical index and computed tomography (CT) images. This multi-modal point-of-care predicting system opens new possibilities for predicting the response of TACE treatment and can help clinicians select the optimal patients with HCC who can benefit from the interventional therapy.
Collapse
Affiliation(s)
- Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongxing Shi
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Xin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linhan Zhang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziao Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanmei Dai
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021; 337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Kristina Živojević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Minja Mladenović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mila Djisalov
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Mirjana Mundzic
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
| | - Nikola Ž Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
13
|
Tao Y, Xu S, Wang J, Xu L, Zhang C, Chen K, Lian Z, Zhou J, Xie H, Zheng S, Xu X. Delivery of microRNA-33 Antagomirs by Mesoporous Silica Nanoparticles to Ameliorate Lipid Metabolic Disorders. Front Pharmacol 2020; 11:921. [PMID: 32848718 PMCID: PMC7419650 DOI: 10.3389/fphar.2020.00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolic disorders have become a major global public health concern. Fatty liver and dyslipidemia are major manifestations of these disorders. Recently, MicroRNA-33 (miR-33), a post-transcriptional regulator of genes involved in cholesterol efflux and fatty acid oxidation, has been considered as a good therapeutic target for these disorders. However, the traditional methods of gene therapy impede their further clinical transformation into a mature treatment system. To counter this problem, in this study we used mesoporous silica nanoparticles (MSNs) as nanocarriers to deliver miR-33 antagomirs developing nanocomposites miR-MSNs. We observed that the hepatocellular uptake of miR-33 antagomirs increased by ∼5 times when they were delivered using miR-MSNs. The regulation effects of miR-MSNs on miR-33 and several genes involved in lipid metabolism were confirmed in L02 cells. In a high-fat diet fed mice, miR-33 intervention via miR-MSNs lowered the serum triglyceride levels remarkably by 18.9% and reduced hepatic steatosis. Thus, our results provide a proof-of-concept for a potential strategy to ameliorate lipid metabolic disorders.
Collapse
Affiliation(s)
- Yaoye Tao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shengjun Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Chenzhi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kangchen Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
14
|
Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials 2020; 256:120191. [PMID: 32593907 DOI: 10.1016/j.biomaterials.2020.120191] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Despite the advantages of mesoporous silica nanoparticles (MSNs) in drug delivery, the inherent non-biodegradability seriously impedes the clinical translation of inorganic MSNs, so the current research focus has been turned to mesoporous organosilica nanoparticles (MONs) with higher biocompatibility and easier biodegradability. Recent remarkable advances in silica fabrication chemistry have catalyzed the emergence of a library of MONs with various structures and functions. This review will summarize the latest state-of-the-art studies on the precise control of morphology, structure, framework, particle size and pore size of MONs, which enables the precise synthesis of MONs with suitable engineering for precision stimuli-responsive drug delivery/release, bioimaging and synergistic therapy. Besides, the potential challenges about the future development of MONs are also outlooked with the intention of attracting more researchers to promote the clinical translation of MONs.
Collapse
|