1
|
Lee PS, Sriperumbudur KK, Dawson J, van Rienen U, Appali R. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012004. [PMID: 39655864 DOI: 10.1088/2516-1091/ad9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The role of bioelectricity in regulating various physiological processes has attracted increasing scientific interest in implementing exogenous electrical stimulations as a therapeutic approach. In particular, electrical stimuli are used clinically in pre-/post-surgery patient care for the musculoskeletal tissues. The reported potential of electric fields (EF) to regulate bone cell homeostasis and kineticsin vitrohas further provoked more studies in this field of research. Various customised apparatuses have been developed, and a range of parameters for the applied EFs have been investigatedin vitrowith bone cells or mesenchymal stem cells. Additionally, biomaterials with conductive or piezo-electric properties have been designed to complement the enhancing effects of the EF on bone regeneration. Despite much research, there remained a significant gap in knowledge due to the diverse range of EF parameters available. Mathematical models are built to facilitate further understanding and zero in on an effective range of EF parametersin silico. However, the diverse range of EF parameters, experimental conditions, and reported analytical output of different works of literature were reported to possess significant variance, making it challenging to accurately model the fieldin silico. This review categorises the existing experimental approaches and the parameters used to distinguish the potential variables that apply to mathematical modelling. Furthermore, we will discuss existing modelling approaches and models available in the literature. With this, we will concisely highlight the need to categorise EF parameters, osteogenic differentiation initiators and research output.
Collapse
Affiliation(s)
- Poh Soo Lee
- Faculty of Mechanical Science and Engineering, Max Bergmann Centre of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Kiran K Sriperumbudur
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Research and Development, MedEL GmbH, Innsbruck, Austria
| | - Jonathan Dawson
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Engineering and Physics, Whitworth University, Spokane, WA 99251, United States of America
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Institute for Electrical Engineering and Biomedical Engineering, UMIT, Hall in Tirol, Austria
| |
Collapse
|
2
|
Panda AK, Basu B. Regenerative bioelectronics: A strategic roadmap for precision medicine. Biomaterials 2023; 301:122271. [PMID: 37619262 DOI: 10.1016/j.biomaterials.2023.122271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
In the past few decades, stem cell-based regenerative engineering has demonstrated its significant potential to repair damaged tissues and to restore their functionalities. Despite such advancement in regenerative engineering, the clinical translation remains a major challenge. In the stance of personalized treatment, the recent progress in bioelectronic medicine likewise evolved as another important research domain of larger significance for human healthcare. Over the last several years, our research group has adopted biomaterials-based regenerative engineering strategies using innovative bioelectronic stimulation protocols based on either electric or magnetic stimuli to direct cellular differentiation on engineered biomaterials with a range of elastic stiffness or functional properties (electroactivity/magnetoactivity). In this article, the role of bioelectronics in stem cell-based regenerative engineering has been critically analyzed to stimulate futuristic research in the treatment of degenerative diseases as well as to address some fundamental questions in stem cell biology. Built on the concepts from two independent biomedical research domains (regenerative engineering and bioelectronic medicine), we propose a converging research theme, 'Regenerative Bioelectronics'. Further, a series of recommendations have been put forward to address the current challenges in bridging the gap in stem cell therapy and bioelectronic medicine. Enacting the strategic blueprint of bioelectronic-based regenerative engineering can potentially deliver the unmet clinical needs for treating incurable degenerative diseases.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Combining Electrostimulation with Impedance Sensing to Promote and Track Osteogenesis within a Titanium Implant. Biomedicines 2023; 11:biomedicines11030697. [PMID: 36979676 PMCID: PMC10045247 DOI: 10.3390/biomedicines11030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
(1) Background: Electrical stimulation is a promising alternative to promote bone fracture healing but with the limitation of tracking the osteogenesis progress in vivo. To overcome this issue, we present an opportunity to combine the electrical stimulation of a commercial titanium implant, which promotes osteogenesis within the fracture, with a real-time readout of the osteogenic progress by impedance sensing. This makes it possible to adjust the electrical stimulation modalities to the individual patient’s fracture healing process. (2) Methods: In detail, osteogenic differentiation of several cell types was monitored under continuous or pulsatile electrical stimulation at 0.7 V AC/20 Hz for at least seven days on a titanium implant by electric cell-substrate impedance sensing (ECIS). For control, chemical induction of osteogenic differentiation was induced. (3) Results: The most significant challenge was to discriminate impedance changes caused by proliferation events from those initiated by osteogenic differentiation. This discrimination was achieved by remodeling the impedance parameter Alpha (α), which increases over time for pulsatile electrically stimulated stem cells. Boosted α-values were accompanied by an increased formation of actin stress fibers and a reduced expression of the focal adhesion kinase in the cell periphery; morphological alterations known to occur during osteogenesis. (4) Conclusions: This work provided the basis for developing an effective fracture therapy device, which can induce osteogenesis on the one hand, and would allow us to monitor the induction process on the other hand.
Collapse
|
4
|
Littman J, Aaron RK. Stimulation of Chondrogenesis in a Developmental Model of Endochondral Bone Formation by Pulsed Electromagnetic Fields. Int J Mol Sci 2023; 24:3275. [PMID: 36834690 PMCID: PMC9967535 DOI: 10.3390/ijms24043275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.
Collapse
Affiliation(s)
| | - Roy K. Aaron
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
5
|
Dawson JE, Sellmann T, Porath K, Bader R, van Rienen U, Appali R, Köhling R. Cell-cell interactions and fluctuations in the direction of motility promote directed migration of osteoblasts in direct current electrotaxis. Front Bioeng Biotechnol 2022; 10:995326. [PMID: 36277406 PMCID: PMC9582662 DOI: 10.3389/fbioe.2022.995326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.
Collapse
Affiliation(s)
- Jonathan Edward Dawson
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Chemistry and Physics, Augusta University, Augusta, GA, United States
- *Correspondence: Jonathan Edward Dawson, ; Rüdiger Köhling,
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Biomechanics and Implant Research Lab, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Center for Translational Neuroscience Research, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Jonathan Edward Dawson, ; Rüdiger Köhling,
| |
Collapse
|
6
|
Zimmermann J, Budde K, Arbeiter N, Molina F, Storch A, Uhrmacher AM, van Rienen U. Using a Digital Twin of an Electrical Stimulation Device to Monitor and Control the Electrical Stimulation of Cells in vitro. Front Bioeng Biotechnol 2021; 9:765516. [PMID: 34957068 PMCID: PMC8693021 DOI: 10.3389/fbioe.2021.765516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Electrical stimulation for application in tissue engineering and regenerative medicine has received increasing attention in recent years. A variety of stimulation methods, waveforms and amplitudes have been studied. However, a clear choice of optimal stimulation parameters is still not available and is complicated by ambiguous reporting standards. In order to understand underlying cellular mechanisms affected by the electrical stimulation, the knowledge of the actual prevailing field strength or current density is required. Here, we present a comprehensive digital representation, a digital twin, of a basic electrical stimulation device for the electrical stimulation of cells in vitro. The effect of electrochemical processes at the electrode surface was experimentally characterised and integrated into a numerical model of the electrical stimulation. Uncertainty quantification techniques were used to identify the influence of model uncertainties on relevant observables. Different stimulation protocols were compared and it was assessed if the information contained in the monitored stimulation pulses could be related to the stimulation model. We found that our approach permits to model and simulate the recorded rectangular waveforms such that local electric field strengths become accessible. Moreover, we could predict stimulation voltages and currents reliably. This enabled us to define a controlled stimulation setting and to identify significant temperature changes of the cell culture in the monitored voltage data. Eventually, we give an outlook on how the presented methods can be applied in more complex situations such as the stimulation of hydrogels or tissue in vivo.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Kai Budde
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Francia Molina
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Adelinde M Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, Rostock, Germany.,Department Ageing of Individuals and Society, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Prominski A, Li P, Miao BA, Tian B. Nanoenabled Bioelectrical Modulation. ACCOUNTS OF MATERIALS RESEARCH 2021; 2:895-906. [PMID: 34723193 PMCID: PMC8547132 DOI: 10.1021/accountsmr.1c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Indexed: 06/01/2023]
Abstract
Studying the formation and interactions between biological systems and artificial materials is significant for probing complex biophysical behaviors and addressing challenging biomedical problems. Bioelectrical interfaces, especially nanostructure-based, have improved compatibility with cells and tissues and enabled new approaches to biological modulation. In particular, free-standing and remotely activated bioelectrical devices demonstrate potential for precise biophysical investigation and efficient clinical therapies. Interacting with single cells or organelles requires devices of sufficiently small size for high resolution probing. Nanoscale semiconductors, given their diverse functionalities, are promising device platforms for subcellular modulation. Tissue-level modulation requires additional consideration regarding the device's mechanical compliance for either conformal contact with the tissue surface or seamless three-dimensional (3D) biointegration. Flexible or even open-framework designs are essential in such methods. For chronic organ integration, the highest level of biocompatibility is required for both the materials and device configurations. Additionally, a scalable and high-throughput design is necessary to simultaneously interact with many individual cells in the organ. The physical, chemical, and mechanical stabilities of devices for organ implantation may be improved by ensuring matching of mechanical behavior at biointerfaces, including passivation or resistance designs to mitigate physiological impacts, or incorporating self-healing or adaptative properties. Recent research demonstrates principles of nanostructured material designs that can be used to improve biointerfaces. Nanoenabled extracellular interfaces were frequently used for either electrical or remote optical modulation of cells and tissues. In particular, methods are now available for designing and screening nanostructured silicon, especially chemical vapor deposition (CVD)-derived nanowires and two-dimensional (2D) nanostructured membranes, for biological modulation in vitro and in vivo. For intra- and intercellular biological modulation, semiconductor/cell composites have been created through the internalization of nanowires, and such cellular composites can even integrate with living tissues. This approach was demonstrated for both neuronal and cardiac modulation. At a different front, laser-derived nanocrystalline semiconductors showed electrochemical and photoelectrochemical activities, and they were used to modulate cells and organs. Recently, self-assembly of nanoscale building blocks enabled fabrication of efficient monolithic carbon-based electrodes for in vitro stimulation of cardiomyocytes, ex vivo stimulation of retinas and hearts, and in vivo stimulation of sciatic nerves. Future studies on nanoenabled bioelectrical modulation should focus on improving efficiency and stability of current and emerging technologies. New materials and devices can access new interrogation targets, such as subcellular structures, and possess more adaptable and responsive properties enabling seamless integration. Drawing inspiration from energy science and catalysis can help in such progress and open new avenues for biological modulation. The fundamental study of living bioelectronics could yield new cellular composites for diverse biological signaling control. In situ self-assembled biointerfaces are of special interest in this area as cell type targeting can be achieved.
Collapse
Affiliation(s)
- Aleksander Prominski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The
James Franck Institute, The University of
Chicago, Chicago, Illinois 60637, United
States
- The
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Pengju Li
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United
States
| | - Bernadette A. Miao
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The
James Franck Institute, The University of
Chicago, Chicago, Illinois 60637, United
States
- The
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|