1
|
Lim SH, Yee GT, Khang D. Nanoparticle-Based Combinational Strategies for Overcoming the Blood-Brain Barrier and Blood-Tumor Barrier. Int J Nanomedicine 2024; 19:2529-2552. [PMID: 38505170 PMCID: PMC10949308 DOI: 10.2147/ijn.s450853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
The blood-brain barrier (BBB) and blood-tumor barrier (BTB) pose substantial challenges to efficacious drug delivery for glioblastoma multiforme (GBM), a primary brain tumor with poor prognosis. Nanoparticle-based combinational strategies have emerged as promising modalities to overcome these barriers and enhance drug penetration into the brain parenchyma. This review discusses various nanoparticle-based combinatorial approaches that combine nanoparticles with cell-based drug delivery, viral drug delivery, focused ultrasound, magnetic field, and intranasal drug delivery to enhance drug permeability across the BBB and BTB. Cell-based drug delivery involves using engineered cells as carriers for nanoparticles, taking advantage of their intrinsic migratory and homing capabilities to facilitate the transport of therapeutic payloads across BBB and BTB. Viral drug delivery uses engineered viral vectors to deliver therapeutic genes or payloads to specific cells within the GBM microenvironment. Focused ultrasound, coupled with microbubbles or nanoparticles, can temporarily disrupt the BBB to increase drug permeability. Magnetic field-guided drug delivery exploits magnetic nanoparticles to facilitate targeted drug delivery under an external magnetic field. Intranasal drug delivery offers a minimally invasive avenue to bypass the BBB and deliver therapeutic agents directly to the brain via olfactory and trigeminal pathways. By combining these strategies, synergistic effects can enhance drug delivery efficiency, improve therapeutic efficacy, and reduce off-target effects. Future research should focus on optimizing nanoparticle design, exploring new combination strategies, and advancing preclinical and clinical investigations to promote the translation of nanoparticle-based combination therapies for GBM.
Collapse
Affiliation(s)
- Su Hyun Lim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Gi Taek Yee
- Department of Neurosurgery, Gil Medical Center, Gachon University, School of Medicine, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
2
|
Yan Y, Cheng YY, Li YR, Jiao XW, Liu YM, Cai HY, Ding YX. Inhibitor of Wnt receptor 1 suppresses the effects of Wnt1, Wnt3a and β‑catenin on the proliferation and migration of C6 GSCs induced by low‑dose radiation. Oncol Rep 2024; 51:22. [PMID: 38099414 PMCID: PMC10777445 DOI: 10.3892/or.2023.8681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The radioresistance of glioma is an important cause of treatment failure and tumor aggressiveness. In the present study, under performed with linear accelerator, the effects of 0.3 and 3.0 Gy low‑dose radiation (LDR) on the proliferation and migration of C6 glioma stem cells in vitro were examined by flow cytometric analysis, immunocytochemistry and western blot analysis. It was found that low‑dose ionizing radiation (0.3 Gy) stimulated the proliferation and migration of these cells, while 3.0 Gy ionizing radiation inhibited the proliferation of C6 glioma stem cells, which was mediated through enhanced Wnt/β‑catenin signaling, which is associated with glioma tumor aggressiveness. LDR treatment increased the expression of the DNA damage marker γ‑H2AX but promoted cell survival with a significant reduction in apoptotic and necrotic cells. When LDR cells were also treated with an inhibitor of Wnt receptor 1 (IWR1), cell proliferation and migration were significantly reduced. IWR1 treatment significantly inhibited Wnt1, Wnt3a and β‑catenin protein expression. Collectively, the current results demonstrated that IWR1 treatment effectively radio‑sensitizes glioma stem cells and helps to overcome the survival advantages promoted by LDR, which has significant implications for targeted treatment in radioresistant gliomas.
Collapse
Affiliation(s)
- Yu Yan
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Ying-Ying Cheng
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan-Ru Li
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Xu-Wen Jiao
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Yin-Ming Liu
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Hai-Yan Cai
- Department of Neurology, The People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Yin-Xiu Ding
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| |
Collapse
|
3
|
Abballe L, Spinello Z, Antonacci C, Coppola L, Miele E, Catanzaro G, Miele E. Nanoparticles for Drug and Gene Delivery in Pediatric Brain Tumors' Cancer Stem Cells: Current Knowledge and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020505. [PMID: 36839827 PMCID: PMC9962005 DOI: 10.3390/pharmaceutics15020505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Primary malignant brain tumors are the most common solid neoplasm in childhood. Despite recent advances, many children affected by aggressive or metastatic brain tumors still present poor prognosis, therefore the development of more effective therapies is urgent. Cancer stem cells (CSCs) have been discovered and isolated in both pediatric and adult patients with brain tumors (e.g., medulloblastoma, gliomas and ependymoma). CSCs are a small clonal population of cancer cells responsible for brain tumor initiation, maintenance and progression, displaying resistance to conventional anticancer therapies. CSCs are characterized by a specific repertoire of surface markers and intracellular specific pathways. These unique features of CSCs biology offer the opportunity to build therapeutic approaches to specifically target these cells in the complex tumor bulk. Treatment of pediatric brain tumors with classical chemotherapeutic regimen poses challenges both for tumor location and for the presence of the blood-brain barrier (BBB). Lastly, the application of chemotherapy to a developing brain is followed by long-term sequelae, especially on cognitive abilities. Novel avenues are emerging in the therapeutic panorama taking advantage of nanomedicine. In this review we will summarize nanoparticle-based approaches and the efficacy that NPs have intrinsically demonstrated and how they are also decorated by biomolecules. Furthermore, we propose novel cargoes together with recent advances in nanoparticle design/synthesis with the final aim to specifically target the insidious CSCs population in the tumor bulk.
Collapse
Affiliation(s)
- Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Celeste Antonacci
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ermanno Miele
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, UK
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| |
Collapse
|
4
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
5
|
Wang X, Chen G. Localized Hyperthermia Induced by Biogenic Synthesized Manganese Oxide Nanoparticles from Cannabis Sativa for Glioblastoma Photothermal Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glioblastoma is one of the most aggressive and fast-growing types of cancers which required sophisticated and effective therapeutic methods. In this work, we synthesized manganese oxide nanoparticles (MnO2 NPs) using a green synthesis approach. In this process, an aqueous
extract of Cannabis sativa (CS) leaves was used as the reacting medium and reducing agent of manganese acetate. The characterizations showed that the synthesized NPs have a diameter of 25–35 nm and high purity. The thermal generating studies showed that the combination of the synthesized
biogenic MnO2 NPs with near-infrared laser (NIR, 808 nm) produce considerable heat in a concentration and power density-dependent manner. In vitro studies revealed that the NPs are cytocompatible in concentration up to 80 μg/mL and induce negligible toxicity (p
< 0.1). On the other hand, the treatment-induced considerably cell death on C6 glioma cells in an optimum concentration and generated heat (p < 0.05). This study showed the CS extract can synthesis MnO2 NPs and the synthesized NPs can be applied as the effective photothermal
agent.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling 317500, China
| | - Guanqun Chen
- Department of Joint Surgery/Medical Sports, The First People’s Hospital of Wenling, Wenling 317500, China
| |
Collapse
|
6
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
8
|
Attia N, Mashal M, Pemminati S, Omole A, Edmondson C, Jones W, Priyadarshini P, Mughal T, Aziz P, Zenick B, Perez A, Lacken M. Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells 2021; 11:116. [PMID: 35011678 PMCID: PMC8750228 DOI: 10.3390/cells11010116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GB), an aggressive primary tumor of the central nervous system, represents about 60% of all adult primary brain tumors. It is notorious for its extremely low (~5%) 5-year survival rate which signals the unsatisfactory results of the standard protocol for GB therapy. This issue has become, over time, the impetus for the discipline of bringing novel therapeutics to the surface and challenging them so they can be improved. The cell-based approach in treating GB found its way to clinical trials thanks to a marvelous number of preclinical studies that probed various types of cells aiming to combat GB and increase the survival rate. In this review, we aimed to summarize and discuss the up-to-date preclinical studies that utilized stem cells or immune cells to treat GB. Likewise, we tried to summarize the most recent clinical trials using both cell categories to treat or prevent recurrence of GB in patients. As with any other therapeutics, cell-based therapy in GB is still hampered by many drawbacks. Therefore, we highlighted several novel techniques, such as the use of biomaterials, scaffolds, nanoparticles, or cells in the 3D context that may depict a promising future when combined with the cell-based approach.
Collapse
Affiliation(s)
- Noha Attia
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria 21561, Egypt
| | - Mohamed Mashal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Sudhakar Pemminati
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Adekunle Omole
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Carolyn Edmondson
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Will Jones
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Priyanka Priyadarshini
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Temoria Mughal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Pauline Aziz
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Blesing Zenick
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Ambar Perez
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Morgan Lacken
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| |
Collapse
|
9
|
Wesley UV, Sutton I, Clark PA, Cunningham K, Larrain C, Kuo JS, Dempsey RJ. Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Res 2021; 1776:147752. [PMID: 34906547 DOI: 10.1016/j.brainres.2021.147752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GB) is highly invasive and resistant to multimodal treatment partly due to distorted vasculature and exacerbated inflammation. The aggressiveness of brain tumors may be attributed to the dysregulated release of angiogenic and inflammatory factors. The glycoprotein pentraxin-3 (PTX3) is correlated with the severity of some cancers. However, the mechanism responsible for the invasive oncogenic role of PTX3 in GB malignancy remains unclear. In this study, we examined the role of PTX3 in GB growth, angiogenesis, and invasion using in vitro and in vivo GB models, proteomic profiling, molecular and biochemical approaches. Under in vitro conditions, PTX3 over-expression in U87 cells correlated with cell cycle progression, increased migratory potential, and proliferation under hypoxic conditions. Conditioned media containing PTX3 enhanced the angiogenic potential of endothelial cells. While silencing of PTX3 by siRNA decreased the proliferation, migration, and angiogenic potential of U87 cells in vitro. Importantly, PTX3 over-expression increased tumor growth, angiogenesis, and invasion in an orthotopic mouse model. Higher levels of PTX3 in these tumors were associated with the upregulation of inflammatory and angiogenic markers including interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), but decreased levels of thrombospondin-1, an anti-angiogenic factor. Mechanistically, exogenous production of PTX3 triggered an IKK/NFκB signaling pathway that enhances the expression of the motility genes AHGEF7 and Rac1. Taken together, PTX3 expression is dysregulated in GB. PTX3 may augment invasion through enhanced angiogenesis in the GB microenvironment through the IL8-VEGF axis. Thus, PTX3 may represent a potential therapeutic target to mitigate the aggressive behavior of gliomas.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| | - Ian Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Paul A Clark
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Human Oncology, University of Wisconsin, Madison, WI 53792, United States
| | - Katelin Cunningham
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Carolina Larrain
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - John S Kuo
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, TAIWAN
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| |
Collapse
|
10
|
Vasileva N, Ageenko A, Dmitrieva M, Nushtaeva A, Mishinov S, Kochneva G, Richter V, Kuligina E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma. Life (Basel) 2021; 11:life11101084. [PMID: 34685455 PMCID: PMC8538059 DOI: 10.3390/life11101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors. Given the poor prognosis of this disease, novel methods for glioblastoma treatment are needed. Virotherapy is one of the most actively developed approaches for cancer therapy today. VV-GMCSF-Lact is a recombinant vaccinia virus with deletions of the viral thymidine kinase and growth factor genes and insertions of the granulocyte–macrophage colony-stimulating factor and oncotoxic protein lactaptin genes. The virus has high cytotoxic activity against human cancer cells of various histogenesis and antitumor efficacy against breast cancer. In this work, we show VV-GMCSF-Lact to be a promising therapeutic agent for glioblastoma treatment. VV-GMCSF-Lact effectively decreases the viability of glioblastoma cells of both immortalized and patient-derived cultures in vitro, crosses the blood–brain barrier, selectively replicates into orthotopically transplanted human glioblastoma when intravenously injected, and inhibits glioblastoma xenograft and metastasis growth when injected intratumorally.
Collapse
Affiliation(s)
- Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(913)-949-6585
| | - Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Maria Dmitrieva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Anna Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Sergey Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street 17, 630091 Novosibirsk, Russia;
| | - Galina Kochneva
- The State Research Center of Virology and Biotechnology “VECTOR”, Department of Molecular Virology of Flaviviruses and Viral Hepatitis, Novosibirsk Region, 630559 Koltsovo, Russia;
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.); (M.D.); (A.N.); (V.R.); (E.K.)
- LLC “Oncostar”, R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, Seneviratne DS, Palmer JD, Trifiletti DM. Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma. Int J Mol Sci 2021; 22:9673. [PMID: 34575840 PMCID: PMC8465220 DOI: 10.3390/ijms22189673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Radiotherapy (RT) is one of the cornerstones in the current treatment paradigm for glioblastoma (GBM). However, little has changed in the management of GBM since the establishment of the current protocol in 2005, and the prognosis remains grim. Radioresistance is one of the hallmarks for treatment failure, and different therapeutic strategies are aimed at overcoming it. Among these strategies, nanomedicine has advantages over conventional tumor therapeutics, including improvements in drug delivery and enhanced antitumor properties. Radiosensitizing strategies using nanoparticles (NP) are actively under study and hold promise to improve the treatment response. We aim to describe the basis of nanomedicine for GBM treatment, current evidence in radiosensitization efforts using nanoparticles, and novel strategies, such as preoperative radiation, that could be synergized with nanoradiosensitizers.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | | | - Timothy D. Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
| | - Danushka S. Seneviratne
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA;
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
12
|
Yang J, Ding W, Wang X, Xiang Y. Knockdown of DNA polymerase ζ relieved the chemoresistance of glioma via inhibiting the PI3K/AKT signaling pathway. Bioengineered 2021; 12:3924-3933. [PMID: 34281455 PMCID: PMC8806676 DOI: 10.1080/21655979.2021.1944027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Previous reports suggest that DNA polymerase ζ is highly expressed in glioma tissues. The present study aimed to investigate the roles of the REV7 subunit of DNA polymerase ζ in glioma cell chemoresistance and its underlying mechanisms. The bioinformatics method was used to compare the expression of REV7 in glioma and normal tissues. The expression of REV7 in glioma tumor samples and the adjacent tissue was examined by reverse transcription polymerase chain reaction. Moreover, an in vitro analysis using glioma cells was used to test the effects of REV7 siRNA on the proliferation and apoptosis of glioma cell line U251 cells, and the effect of REV7 siRNA on the sensitivity of the U251 cells to cisplatin was also explored. The expression of REV7 in glioma tumors was significantly increased. Moreover, the knockdown of REV7 in glioma cells decreased the proliferation and increased the apoptosis of U251 cells; moreover, REV7 siRNA also increased the sensitivity of U251 cells to cisplatin. Finally, REV7 may regulate the proliferation, apoptosis, and chemosensitivity of U251 cells by affecting phosphoinositide 3-kinase signaling. Our data suggest that REV7 is involved in the chemosensitivity of glioma cells and provides a theoretical basis for targeting DNA polymerase ζ to improve the sensitivity of glioma cells to chemotherapy.
Collapse
Affiliation(s)
- Junbao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weilong Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yongsheng Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|