1
|
Banerjee D, Yunus IS, Wang X, Kim J, Srinivasan A, Menchavez R, Chen Y, Gin JW, Petzold CJ, Martin HG, Magnuson JK, Adams PD, Simmons BA, Mukhopadhyay A, Kim J, Lee TS. Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida. Metab Eng 2024; 82:157-170. [PMID: 38369052 DOI: 10.1016/j.ymben.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.
Collapse
Affiliation(s)
- Deepanwita Banerjee
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian S Yunus
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xi Wang
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jinho Kim
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aparajitha Srinivasan
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Russel Menchavez
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hector Garcia Martin
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jon K Magnuson
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Adams
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Taek Soon Lee
- Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
González‐Valdez A, Escalante A, Soberón‐Chávez G. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones. Microb Biotechnol 2024; 17:e14377. [PMID: 38041625 PMCID: PMC10832566 DOI: 10.1111/1751-7915.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Rhamnolipids (RL) are biosurfactants naturally produced by the opportunistic pathogen Pseudomonas aeruginosa. Currently, RL are commercialized for various applications and produced by Pseudomonas putida due to the health risks associated with their large-scale production by P. aeruginosa. In this work, we show that RL containing one or two rhamnose moieties (mono-RL or di-RL, respectively) can be produced by the innocuous soil-bacterium Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 at titres up to 66 mg/L (about 86% of the production of P. aeruginosa PAO1 in the same culture conditions). The production of RL depends on the expression of P. aeruginosa PAO1 genes encoding the enzymes RhlA, RhlB and RhlC. These genes were introduced in a plasmid, together with a transcriptional regulator (rhlR) forming part of the same operon, with and without RhlC. We show that the activation of rhlAB by RhlR depends on its interaction with P. chlororaphis endogenous acyl-homoserine lactones, which are synthetized by either PhzI or CsaI autoinducer synthases (producing 3-hydroxy-hexanoyl homoserine lactone, 3OH-C6-HSL, or 3-oxo-hexanoyl homoserine lactone, 3O-C6-HSL, respectively). P. chlororaphis transcriptional regulator couple with 3OH-C6-HSL is the primary activator of gene expression for phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN) production in this soil bacterium. We show that RhlR coupled with 3OH-C6-HSL or 3O-C6-HSL promotes RL production and increases the production of PCA in P. chlororaphis. However, PhzR/3OH-C6-HSL or CsaR/3O-C6-HSL cannot activate the expression of the rhlAB operon to produce mono-RL. These results reveal a complex regulatory interaction between RhlR and P. chlororaphis quorum-sensing signals and highlight the biotechnology potential of P. chlororaphis ATCC 9446 expressing P. aeruginosa rhlAB-R or rhlAB-R-C for the industrial production of RL.
Collapse
Affiliation(s)
- Abigail González‐Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Gloria Soberón‐Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| |
Collapse
|
3
|
Baccile N, Poirier A, Perez J, Pernot P, Hermida-Merino D, Le Griel P, Blesken CC, Müller C, Blank LM, Tiso T. Self-Assembly of Rhamnolipid Bioamphiphiles: Understanding the Structure-Property Relationship Using Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37379248 DOI: 10.1021/acs.langmuir.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The structure-property relationship of rhamnolipids, RLs, well-known microbial bioamphiphiles (biosurfactants), is explored in detail by coupling cryogenic transmission electron microscopy (cryo-TEM) and both ex situ and in situ small-angle X-ray scattering (SAXS). The self-assembly of three RLs with reasoned variation of their molecular structure (RhaC10, RhaC10C10, and RhaRhaC10C10) and a rhamnose-free C10C10 fatty acid is studied in water as a function of pH. It is found that RhaC10 and RhaRhaC10C10 form micelles in a broad pH range and RhaC10C10 undergoes a micelle-to-vesicle transition from basic to acid pH occurring at pH 6.5. Modeling coupled to fitting SAXS data allows a good estimation of the hydrophobic core radius (or length), the hydrophilic shell thickness, the aggregation number, and the surface area per RL. The essentially micellar morphology found for RhaC10 and RhaRhaC10C10 and the micelle-to-vesicle transition found for RhaC10C10 are reasonably well explained by employing the packing parameter (PP) model, provided a good estimation of the surface area per RL. On the contrary, the PP model fails to explain the lamellar phase found for the protonated RhaRhaC10C10 at acidic pH. The lamellar phase can only be explained by values of the surface area per RL being counterintuitively small for a di-rhamnose group and folding of the C10C10 chain. These structural features are only possible for a change in the conformation of the di-rhamnose group between the alkaline and acidic pH.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette 91190, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, 38043 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Christian C Blesken
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Conrad Müller
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Till Tiso
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
4
|
Kumar R, Barbhuiya RI, Bohra V, Wong JWC, Singh A, Kaur G. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Microbiol Res 2023; 272:127386. [PMID: 37094547 DOI: 10.1016/j.micres.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Varsha Bohra
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
5
|
Oraby أميرة عرابي A, Weickardt I, Zibek S. Foam Fractionation Methods in Aerobic Fermentation Processes. Biotechnol Bioeng 2022; 119:1697-1711. [PMID: 35394649 DOI: 10.1002/bit.28102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022]
Abstract
Inherently occurring foam formation during aerobic fermentations of surface-active compounds can be exploited by fractionating the foam. This also serves as the first downstream processing step for product concentration and is used for in situ product recovery. Compared to other foam prevention methods, it does not interfere with fermentation parameters or alter broth composition. Nevertheless, parameters affecting the foaming behaviour are complex. Therefore, the specific foam fractionation designs need to be engineered for each fermentation individually. This still hinders a widespread industrial application. However, few available commercial approaches demonstrate the applicability of foam columns on an industrial scale. This systematic literature review highlights relevant design aspects and process demands that need to be considered for an application to fermentations and proposes a classification of foam fractionation designs and methods. It further analyses substance-specific characteristics associated with foam fractionation. Finally, solutions for current challenges are presented, and future perspectives are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amira Oraby أميرة عرابي
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Isabell Weickardt
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Blunt W, Blanchard C, Morley K. Effects of environmental parameters on microbial rhamnolipid biosynthesis and bioreactor strategies for enhanced productivity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Welsing G, Wolter B, Hintzen HMT, Tiso T, Blank LM. Upcycling of hydrolyzed PET by microbial conversion to a fatty acid derivative. Methods Enzymol 2021; 648:391-421. [PMID: 33579413 DOI: 10.1016/bs.mie.2020.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The enzymatic degradation of polyethylene terephthalate (PET) results in a hydrolysate consisting almost exclusively of its two monomers, ethylene glycol and terephthalate. To biologically valorize the PET hydrolysate, microbial upcycling into high-value products is proposed. Fatty acid derivatives hydroxyalkanoyloxy alkanoates (HAAs) represent such valuable target molecules. HAAs exhibit surface-active properties and can be exploited in the catalytical conversion to drop-in biofuels as well as in the polymerization to bio-based poly(amide urethane). This chapter presents the genetic engineering methods of pseudomonads for the metabolization of PET monomers and the biosynthesis of HAAs with detailed protocols concerning product purification.
Collapse
Affiliation(s)
- Gina Welsing
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Birger Wolter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Henric M T Hintzen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
Blesken CC, Strümpfler T, Tiso T, Blank LM. Uncoupling Foam Fractionation and Foam Adsorption for Enhanced Biosurfactant Synthesis and Recovery. Microorganisms 2020; 8:microorganisms8122029. [PMID: 33353027 DOI: 10.3390/microorganisms8122029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
The production of biosurfactants is often hampered by excessive foaming in the bioreactor, impacting system scale-up and downstream processing. Foam fractionation was proposed to tackle this challenge by combining in situ product removal with a pre-purification step. In previous studies, foam fractionation was coupled to bioreactor operation, hence it was operated at suboptimal parameters. Here, we use an external fractionation column to decouple biosurfactant production from foam fractionation, enabling continuous surfactant separation, which is especially suited for system scale-up. As a subsequent product recovery step, continuous foam adsorption was integrated into the process. The configuration is evaluated for rhamnolipid (RL) or 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA, i.e., RL precursor) production by recombinant non-pathogenic Pseudomonas putida KT2440. Surfactant concentrations of 7.5 gRL/L and 2.0 gHAA/L were obtained in the fractionated foam. 4.7 g RLs and 2.8 g HAAs could be separated in the 2-stage recovery process within 36 h from a 2 L culture volume. With a culture volume scale-up to 9 L, 16 g RLs were adsorbed, and the space-time yield (STY) increased by 31% to 0.21 gRL/L·h. We demonstrate a well-performing process design for biosurfactant production and recovery as a contribution to a vital bioeconomy.
Collapse
Affiliation(s)
- Christian C Blesken
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Tessa Strümpfler
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Till Tiso
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
9
|
Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production. Microorganisms 2020; 8:microorganisms8121959. [PMID: 33322018 PMCID: PMC7763313 DOI: 10.3390/microorganisms8121959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Sufficient supply of oxygen is a major bottleneck in industrial biotechnological synthesis. One example is the heterologous production of rhamnolipids using Pseudomonas putida KT2440. Typically, the synthesis is accompanied by strong foam formation in the reactor vessel hampering the process. It is caused by the extensive bubbling needed to sustain the high respirative oxygen demand in the presence of the produced surfactants. One way to reduce the oxygen requirement is to enable the cells to use the anode of a bioelectrochemical system (BES) as an alternative sink for their metabolically derived electrons. We here used a P. putida KT2440 strain that interacts with the anode using mediated extracellular electron transfer via intrinsically produced phenazines, to perform heterologous rhamnolipid production under oxygen limitation. The strain P. putida RL-PCA successfully produced 30.4 ± 4.7 mg/L mono-rhamnolipids together with 11.2 ± 0.8 mg/L of phenazine-1-carboxylic acid (PCA) in 500-mL benchtop BES reactors and 30.5 ± 0.5 mg/L rhamnolipids accompanied by 25.7 ± 8.0 mg/L PCA in electrode containing standard 1-L bioreactors. Hence, this study marks a first proof of concept to produce glycolipid surfactants in oxygen-limited BES with an industrially relevant strain.
Collapse
|
10
|
Kubicki S, Bator I, Jankowski S, Schipper K, Tiso T, Feldbrügge M, Blank LM, Thies S, Jaeger KE. A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Front Bioeng Biotechnol 2020; 8:958. [PMID: 32974305 PMCID: PMC7468441 DOI: 10.3389/fbioe.2020.00958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
A large variety of microorganisms produces biosurfactants with the potential for a number of diverse industrial applications. To identify suitable wild-type or engineered production strains, efficient screening methods are needed, allowing for rapid and reliable quantification of biosurfactants in multiple cultures, preferably at high throughput. To this end, we have established a novel and sensitive assay for the quantification of biosurfactants based on the dye Victoria Pure Blue BO (VPBO). The assay allows the colorimetric assessment of biosurfactants directly in culture supernatants and does not require extraction or concentration procedures. Working ranges were determined for precise quantification of different rhamnolipid biosurfactants; titers in culture supernatants of recombinant Pseudomonas putida KT2440 calculated by this assay were confirmed to be the same ranges detected by independent high-performance liquid chromatography (HPLC)-charged aerosol detector (CAD) analyses. The assay was successfully applied for detection of chemically different anionic or non-ionic biosurfactants including mono- and di-rhamnolipids (glycolipids), mannosylerythritol lipids (MELs, glycolipids), 3-(3-hydroxyalkanoyloxy) alkanoic acids (fatty acid conjugates), serrawettin W1 (lipopeptide), and N-acyltyrosine (lipoamino acid). In summary, the VPBO assay offers a broad range of applications including the comparative evaluation of different cultivation conditions and high-throughput screening of biosurfactant-producing microbial strains.
Collapse
Affiliation(s)
- Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Isabel Bator
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Silke Jankowski
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Center of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Schipper
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Center of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Till Tiso
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Michael Feldbrügge
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Center of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars M. Blank
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Forschungszentrum Jülich GmbH, Bioeconomy Science Center (BioSC), Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG 1: Biotechnology, Jülich, Germany
| |
Collapse
|
11
|
Tiso T, Ihling N, Kubicki S, Biselli A, Schonhoff A, Bator I, Thies S, Karmainski T, Kruth S, Willenbrink AL, Loeschcke A, Zapp P, Jupke A, Jaeger KE, Büchs J, Blank LM. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Front Bioeng Biotechnol 2020; 8:976. [PMID: 32974309 PMCID: PMC7468518 DOI: 10.3389/fbioe.2020.00976] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid-liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.
Collapse
Affiliation(s)
- Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nina Ihling
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Sonja Kubicki
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andreas Biselli
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Andreas Schonhoff
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Isabel Bator
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stephan Thies
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Karmainski
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sebastian Kruth
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anna-Lena Willenbrink
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Anita Loeschcke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Petra Zapp
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Jupke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Bio- and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|