1
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
2
|
Hu S, Zhao Z, Wan Z, Bu W, Chen S, Han T, Lu Y. The effect of platelet-rich fibrin on the biological properties of urothelial cells. Sci Rep 2024; 14:24527. [PMID: 39424881 PMCID: PMC11489682 DOI: 10.1038/s41598-024-75699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Urethral reconstruction presents a challenging issue in urology, primarily due to the limited availability of alternative materials for repair. The advancement of bioengineering technology has brought new hope to researchers, with a focus on the selection of appropriate biological scaffolds and seed cells. In order to find an ideal alternative material, we used platelet-rich fibrin as the bioscaffold and urothelial cells as the seed cells, meanwhile, we intended to investigate the effect of platelet-rich fibrin on the biological properties of urothelial cells. We transformed and characterised induced pluripotent stem cells into urothelial cells and prepared platelet-rich fibrin. Platelet-rich fibrin was cultured in a complex with urothelial cells to observe the effect of platelet-rich fibrin on the proliferation and migration ability of urothelial cells. The results showed that the induced pluripotent stem cells were successfully transformed into urothelial cells, platelet-rich fibrin was regularly arranged in cords, with platelets and other structures distributed between them, and the proliferation and migration of urothelial cells were significantly increased. These results suggested that platelet-rich fibrin is biocompatible with urothelial cells and it promotes the proliferation and migration of urothelial cells, which lays a good foundation for its use as an alternative material for urethral repair.
Collapse
Affiliation(s)
- Shaohua Hu
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, 570206, China
| | - Zhenli Zhao
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, 570206, China.
| | - Zhisheng Wan
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, 570206, China
| | - Weizhen Bu
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, 570206, China
| | - Songqiang Chen
- Department of Urology, Hainan Women and Children's Medical Center, Haikou, 570206, China
| | - Tianhong Han
- Department of Endoscopy Centre, Hainan Women and Children's Medical Center, Haikou, 570206, China
| | - Yiqun Lu
- Department of Urology, Children's Hospital of Fudan University, Shanghai, 201102, China
| |
Collapse
|
3
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Uhljar LÉ, Ambrus R. Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face Masks) and Their Regulatory Approach. Pharmaceutics 2023; 15:417. [PMID: 36839739 PMCID: PMC9965305 DOI: 10.3390/pharmaceutics15020417] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Electrospinning is the simplest and most widely used technology for producing ultra-thin fibers. During electrospinning, the high voltage causes a thin jet to be launched from the liquid polymer and then deposited onto the grounded collector. Depending on the type of the fluid, solution and melt electrospinning are distinguished. The morphology and physicochemical properties of the produced fibers depend on many factors, which can be categorized into three groups: process parameters, material properties, and ambient parameters. In the biomedical field, electrospun nanofibers have a wide variety of applications ranging from medication delivery systems to tissue engineering scaffolds and soft electronics. Many of these showed promising results for potential use as medical devices in the future. Medical devices are used to cure, prevent, or diagnose diseases without the presence of any active pharmaceutical ingredients. The regulation of conventional medical devices is strict and carefully controlled; however, it is not yet properly defined in the case of nanotechnology-made devices. This review is divided into two parts. The first part provides an overview on electrospinning through several examples, while the second part focuses on developments in the field of electrospun medical devices. Additionally, the relevant regulatory framework is summarized at the end of this paper.
Collapse
Affiliation(s)
| | - Rita Ambrus
- Faculty of Pharmacy, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Song B, Fang L, Mao X, Ye X, Yan Z, Ma Q, Shi Z, Hu Y, Zhu Y, Cheng Y. Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway. Front Bioeng Biotechnol 2023; 10:1092543. [PMID: 36686259 PMCID: PMC9849368 DOI: 10.3389/fbioe.2022.1092543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: The repair of a diseased ureter is an urgent clinical issue that needs to be solved. A tissue-engineered scaffold for ureteral replacement is currently insufficient due to its incompetent bioactivity, especially in long-segment abnormalities. The primary reason is the failure of urothelialization on scaffolds. Methods: In this work, we investigated the ability of gelatin-grafted tubular scaffold in ureteral repairment and its related biological mechanism. We designed various porous asymmetric poly (L-lactic acid) (PLLA)/poly (L-lactide-co-e-caprolactone) (PLCL) tubes with a thermally induced phase separation (TIPS) method via a change in the ratio of solvents (named PP). To regulate the phenotype of urothelial cells and ureteral reconstruction, gelatin was grafted onto the tubular scaffold using ammonolysis and glutaraldehyde crosslinking (named PP-gel). The in vitro and in vivo experiments were performed to test the biological function and the mechanism of the scaffolds. Results and Discussion: The hydrophilicity of the scaffold significantly increased after gelatin grafting, which promoted the adhesion and proliferation of urothelial cells. Through subcutaneous implantation in rats, PP-gel scaffolds demonstrated good biocompatibility. The in vivo replacement showed that PP-gel could improve urothelium regeneration and maintain renal function after the ureter was replaced with an ∼4 cm-long PP-gel tube using New Zealand rabbits as the experimental animals. The related biologic mechanism of ureteral reconstruction was detected in detail. The gelatin-grafted scaffold upgraded the integrin α6/β4 on the urothelial cell membrane, which phosphorylates the focal adhesion kinase (FAK) and enhances urothelialization via the MAPK/Erk signaling pathway. Conclusion: All these results confirmed that the PP46-gel scaffold is a promising candidate for the constitution of an engineered ureter and to repair long-segment ureteral defects.
Collapse
Affiliation(s)
- Baiyang Song
- School of Medicine, Ningbo University, Ningbo, China,Department of Urology, Ningbo First Hospital, Ningbo, China
| | - Li Fang
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Xufeng Mao
- School of Medicine, Ningbo University, Ningbo, China
| | - Xianwang Ye
- Department of Radiology, Ningbo First Hospital, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Qi Ma
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Zewen Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiwei Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| |
Collapse
|
6
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
7
|
Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022; 23:ijms231810519. [PMID: 36142432 PMCID: PMC9502833 DOI: 10.3390/ijms231810519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic modalities to treat urethral strictures are associated with several challenges and shortcomings. Therefore, significant strides have been made to develop strategies with minimal side effects and the highest therapeutic potential. In this framework, electrospun scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the native cells’ niches and provide essential microenvironmental cues for the safe transplantation of multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications, and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect repair process. First, the current status of electrospinning in urethral tissue engineering is presented. Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent preclinical studies are summarized and the current challenges are discussed.
Collapse
|
8
|
Fink EE, Sona S, Tran U, Desprez PE, Bradley M, Qiu H, Eltemamy M, Wee A, Wolkov M, Nicolas M, Min B, Haber GP, Wessely O, Lee BH, Ting AH. Single-cell and spatial mapping Identify cell types and signaling Networks in the human ureter. Dev Cell 2022; 57:1899-1916.e6. [PMID: 35914526 PMCID: PMC9381170 DOI: 10.1016/j.devcel.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 01/16/2023]
Abstract
Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments. Furthermore, we analyze and experimentally validate the importance of the sonic hedgehog (SHH) signaling pathway in adult progenitor cell maintenance. The SHH-expressing basal cells support organoid generation in vitro and accurately predict the differentiation trajectory from basal progenitor cells to terminally differentiated umbrella cells. Our results highlight the essential processes involved in adult ureter tissue homeostasis and provide a blueprint for guiding ureter tissue engineering.
Collapse
Affiliation(s)
- Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Surbhi Sona
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uyen Tran
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Pierre-Emmanuel Desprez
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, CHU Lille, Claude Huriez Hospital, Université Lille, 59000 Lille, France
| | - Matthew Bradley
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hong Qiu
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohamed Eltemamy
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alvin Wee
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Madison Wolkov
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marlo Nicolas
- Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Georges-Pascal Haber
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Kang D, Liu Z, Qian C, Huang J, Zhou Y, Mao X, Qu Q, Liu B, Wang J, Hu Z, Miao Y. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. Acta Biomater 2022:S1742-7061(22)00142-8. [PMID: 35288311 DOI: 10.1016/j.actbio.2022.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Hair follicle (HF) regeneration remains challenging, principally due to the absence of a platform that can successfully generate the microenvironmental cues of hair neogenesis. Here, we demonstrate a 3D bioprinting technique based on a gelatin/alginate hydrogel (GAH) to construct a multilayer composite scaffold simulating the HF microenvironment in vivo. Fibroblasts (FBs), human umbilical vein endothelial cells (HUVECs), dermal papilla cells (DPCs), and epidermal cells (EPCs) were encapsulated in GAH (prepared from a mixture of gelatin and alginate) and respectively 3D-bioprinted into the different layers of a composite scaffold. The bioprinted scaffold with epidermis- and dermis-like structure was subsequently transplanted into full-thickness wounds in nude mice. The multilayer scaffold demonstrated suitable cytocompatibility and increased the proliferation ability of DPCs (1.2-fold; P < 0.05). It also facilitated the formation of self-aggregating DPC spheroids and restored DPC genes associated with hair induction (ALP, β-catenin, and α-SMA). The dermal and epidermal cells self-assembled successfully into immature HFs in vitro. HFs were regenerated in the appropriate orientation in vivo, which can mainly be attributed to the hierarchical grid structure of the scaffold and the dot bioprinting of DPCs. Our 3D printed scaffolds provide a suitable microenvironment for DPCs to regenerate entire HFs and could make a significant contribution in the medical management of hair loss. This method may also have broader applications in skin tissue (and appendage) engineering. STATEMENT OF SIGNIFICANCE: Hair loss remains a challenging clinical problem that influences quality of life. Three-dimensional (3D) bioprinting has become a useful tool for the fabrication of tissue constructs for transplantation and other biomedical applications. In this study, we used a 3D bioprinting technique based on a gelatin/alginate hydrogel to construct a multi-layer composite scaffold with cuticular and corium layers to simulate the microenvironment of dermal papilla cells (DPCs) in the human body. This new approach permits the controllable formation of self-aggregating spheroids of DPCs in a physiologically relevant extracellular matrix and the initiation of epidermal-mesenchymal interactions, which results in HF formation in vivo. The ability to regenerate entire HFs should have a significant impact on the medical management of hair loss.
Collapse
|
10
|
Niu Y, Galluzzi M, Deng F, Zhao Z, Fu M, Su L, Sun W, Jia W, Xia H. A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium. Bioeng Transl Med 2021; 7:e10268. [PMID: 35600655 PMCID: PMC9115696 DOI: 10.1002/btm2.10268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to investigate the regulatory effect of hyaluronic acid (HA)—coating silk fibroin (SF) nanofibers during epithelialization of urinary tract for urethral regeneration. The obtained electrospun biomimetic tubular HA‐SF nanofiber scaffold is composed of a dense inner layer and a porous outer layer in order to mimic adhesion and cavernous layers of the native tissue, respectively. A thin layer of HA‐gel coating was fixed in the inner wall to provide SF nanofibers with a dense and smooth surface nano‐topography and higher hydrophilicity. Compared with pure SF nanofibers, HA‐SF nanofibers significantly promoted the adhesion, growth, and proliferation of primary urothelial cells, and up‐regulate the expression of uroplakin‐3 (terminal differentiation keratin protein in urothelium). Using the New Zealand male rabbit urethral injury model, the scaffold composed of tubular HA‐SF nanofibers could recruit lumen and myoepithelial cells from the adjacent area of the host, rapidly reconstructing the urothelial barrier in the wound area in order to keep the urinary tract unobstructed, thereby promoting luminal epithelialization, smooth muscle bundle structural remodeling, and capillary formation. Overall, the synergistic effects of nano‐topography and biophysical cues in a biomimetic scaffold design for effective endogenous regeneration.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| | - Fuming Deng
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Zhang Zhao
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Ming Fu
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Liang Su
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Weitang Sun
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Wei Jia
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Huimin Xia
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| |
Collapse
|
11
|
Kang D, Liu Z, Qian C, Huang J, Zhou Y, Mao X, Qu Q, Liu B, Wang J, Wang Y, Hu Z, Huang W, Miao Y. A three-dimensional bioprinting technique, based on a gelatin/alginate hydrogel, for the tissue engineering of hair follicle reconstruction. Int J Biol Macromol 2021:S0141-8130(21)01927-9. [PMID: 34509522 DOI: 10.1016/j.ijbiomac.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Hair loss remains a challenging clinical problem that influences the quality of life. Three-dimensional (3D) bioprinting has become a valuable tool for fabricating tissue constructs for transplantation and other biomedical applications. Although some simple organs, such as skin and cartilage, have been successfully simulated, it remains challenging to make hair follicles (HFs), which are highly complex organs. The tissue engineering of human HFs has been a long-standing challenge, and progress with this has lagged behind that with other lab-grown tissues. This is principally due to a lack of availability of a platform that can successfully recapitulate the microenvironmental cues required to maintain the requisite cellular interactions for hair neogenesis. In this study, we used a 3D bioprinting technique based on a gelatin/alginate hydrogel to construct a multilayer composite scaffold with cuticular and corium layers to simulate the microenvironment of dermal papilla cells (DPCs) in the human body. This new approach permits the controllable formation of self-aggregating spheroids of DPCs in a physiologically relevant extracellular matrix and the initiation of epidermal-mesenchymal interactions, which results in HF formation in vivo. In conclusion, our 3D-bioprinted multilayer composite scaffold prepared using a gelatin/alginate hydrogel provides a suitable 3D microenvironment for DPCs to induce HF formation. The ability to regenerate entire HFs should have a significant impact on the medical management of hair loss. This method may also have critical applications for skin tissue engineering, with its appendages, for other purposes.
Collapse
Affiliation(s)
- Deni Kang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuanmu Qian
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoyan Mao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yilin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|