1
|
de Souza Araújo IJ, Bottino MC. Biofabrication - Revolutionizing the future of regenerative periodontics. Dent Mater 2025; 41:179-193. [PMID: 39632205 DOI: 10.1016/j.dental.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Periodontium is a compartmentalized and highly specialized tissue responsible for tooth stability. Loss of tooth attachment due to periodontitis and trauma is a complex clinical burden affecting a large parcel of the adult and elderly population worldwide, and regenerative strategies to reestablish the native conditions of the periodontium are paramount. Biofabrication of scaffolds, through various techniques and materials, for regenerative periodontics has significantly evolved in the last decades. From the basics of occlusive membranes and graft materials to the complexity of converging 3D printing and Bioprinting using image-based models, biofabrication opens many possibilities for patient-specific scaffolds that recapitulate the anatomical and physiological conditions of periodontal tissues and interfaces. Thus, this review presents fundamental concepts related to the native characteristics of the periodontal tissues, the key to designing personalized strategies, and the latest trends of biofabrication in regenerative periodontics with a critical overview of how these emerging technologies have the potential to shift the one-size-fits-all paradigm.
Collapse
Affiliation(s)
- Isaac J de Souza Araújo
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
3
|
Benetti F, de Oliveira PHC, de Andrade MPB, Cantiga-Silva C, Sivieri-Araújo G, Dezan Júnior E, Gomes-Filho JE, Diniz IMA, dos Reis-Prado AH, Souza MT, Zanotto ED, Cintra LTA. Cytotoxicity, Biocompatibility, and Calcium Deposition Capacity of 45S5 Bioglass Experimental Paste and Bio-C Temp: In Vitro and In Vivo Study Using Wistar Rats. J Funct Biomater 2024; 15:184. [PMID: 39057305 PMCID: PMC11277654 DOI: 10.3390/jfb15070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The evolution of biomaterials engineering allowed for the development of products that improve outcomes in the medical-dental field. Bioglasses have demonstrated the ability to either compose or replace different materials in dentistry. This study evaluated the cytotoxicity, biocompatibility, calcium deposition, and collagen maturation of 45S5 bioglass experimental paste and Bio-C Temp, compared to calcium hydroxide (Ca(OH)2) paste. The 45S5 bioglass and Ca(OH)2 powder were mixed with distilled water (ratio 2:1); Bio-C Temp is ready-for-use. Dental pulp cells were exposed to the materials' extracts (1:2 and 1:4 dilutions; 24, 48, and 72 h) for MTT and live/dead analyses. Polyethylene tubes filled with the pastes, or left empty (control), were implanted on the dorsum of 16 rats. After 7 and 30 days (n = 8/period), the rats were euthanized and the specimens were processed for hematoxylin-eosin (H&E), von Kossa (vK), and picrosirius red (PSR) staining, or without staining for polarized light (PL) birefringence analysis. A statistical analysis was applied (p < 0.05). There was no difference in cell viability among Ca(OH)2, 45S5 bioglass, and the control, across all periods and dilutions (p > 0.05), while Bio-C Temp was cytotoxic in all periods and dilutions compared to the control (p < 0.05). Regarding biocompatibility, there was a reduction in inflammation from 7 to 30 days for all groups, without significant differences among the groups for any period (p > 0.05). The fibrous capsules were thick for all groups at 7 days and thin at 30 days. All materials showed positive structures for vK and PL analysis. At 7 days, the control and 45S5 bioglass showed more immature collagen than the other groups (p < 0.05); at 30 days, 45S5 bioglass had more immature than mature collagen, different from the other groups (p < 0.05). In conclusion, Bio-C Temp presented cytotoxicity compared to the other materials, but the three pastes showed biocompatibility and induced calcium deposition. Additionally, the bioglass paste allowed for marked and continuous collagen proliferation. This study contributed to the development of new biomaterials and highlighted different methodologies for understanding the characteristics of medical-dental materials.
Collapse
Affiliation(s)
- Francine Benetti
- Endodontic Section, Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil; (F.B.); (I.M.A.D.); (A.H.d.R.-P.)
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - Pedro Henrique Chaves de Oliveira
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - Maria Paula Bernal de Andrade
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - Cristiane Cantiga-Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - Gustavo Sivieri-Araújo
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - Eloi Dezan Júnior
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - João Eduardo Gomes-Filho
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| | - Ivana Márcia Alvez Diniz
- Endodontic Section, Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil; (F.B.); (I.M.A.D.); (A.H.d.R.-P.)
| | - Alexandre Henrique dos Reis-Prado
- Endodontic Section, Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil; (F.B.); (I.M.A.D.); (A.H.d.R.-P.)
| | - Marina Trevelin Souza
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos (UFSCar), Sao Carlos CEP 13565-905, SP, Brazil; (M.T.S.); (E.D.Z.)
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos (UFSCar), Sao Carlos CEP 13565-905, SP, Brazil; (M.T.S.); (E.D.Z.)
| | - Luciano Tavares Angelo Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), José Bonifácio 1193, Vila Mendonça, Araçatuba CEP 16015-050, SP, Brazil; (P.H.C.d.O.); (M.P.B.d.A.); (C.C.-S.); (G.S.-A.); (E.D.J.); (J.E.G.-F.)
| |
Collapse
|
4
|
彭 雨, 兰 梁, 穆 君, 侯 沙, 程 丽. [Research progress on biocomposites based on bioactive glass]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:805-811. [PMID: 37666773 PMCID: PMC10477385 DOI: 10.7507/1001-5515.202202016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2023] [Indexed: 09/06/2023]
Abstract
Bioactive glass (BG) has been widely used in the preparation of artificial bone scaffolds due to its excellent biological properties and non-cytotoxicity, which can promote bone and soft tissue regeneration. However, due to the brittleness, poor mechanical strength, easy agglomeration and uncontrollable structure of glass material, its application in various fields is limited. In this regard, most current researches mainly focus on mixing BG with organic or inorganic materials by freeze-drying method, sol-gel method, etc., to improve its mechanical properties and brittleness, so as to increase its clinical application and expand its application field. This review introduces the combination of BG with natural organic materials, metallic materials and non-metallic materials, and demonstrates the latest technology and future prospects of BG composite materials through the development of scaffolds, injectable fillers, membranes, hydrogels and coatings. The previous studies show that the addition of BG improves the mechanical properties, biological activity and regeneration potential of the composites, and broadens the application of BG in the field of bone tissue engineering. By reviewing the recent BG researches on bone regeneration, the research potential of new materials is demonstrated, in order to provide a reference for future related research.
Collapse
Affiliation(s)
- 雨 彭
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 梁 兰
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 君宇 穆
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 沙 侯
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| | - 丽佳 程
- 成都大学 基础医学院(成都 610106)Basic Medical School, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
5
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Khan AS, AlDahlan BG, Maghrabi NH, Albilali HW, Ahmed SZ, Shah AT, Haridy R, Akhtar S, Talal A. Application of laser on enamel surface with three types of bioactive glasses-based resin infiltrants: An in vitro study. J Mech Behav Biomed Mater 2023; 141:105792. [PMID: 37001247 DOI: 10.1016/j.jmbbm.2023.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE The study aimed to evaluate and compare the surface micro-hardness, roughness, color, and morphology of enamel after Er,Cr:YSGG laser irradiation, followed by application of three types of bioactive glasses-based resin infiltrants, and the samples groups were challenged with the pH cycle. METHODOLOGY Experimental photoactivated resin infiltrants were synthesized using dimethacrylate resins, whereby three different types of bioactive glasses (BGs), i.e., 45S5, fluoridated-BG (F-BG), and borosilicate-BG (B-BG), were incorporated into the resin system. Initially, white spot lesions were created artificially on the toosth enamel surface, then irradiated with Er,Cr:YSGG laser. Then, the resin-only and BG-based resins were infiltrated on the enamel surface. All samples were pH challenged for 14 days, and the micro-hardness, surface roughness, surface morphology, and color stability (ΔE) analyses were conducted before and after the 14 days pH challenge. RESULTS After laser irradiation, the micro-hardness was significantly high with 45S5 group compared to resin-only (p = 0.021), F-BG (p = 0.042), and B-BG (p = 0.001) groups. After the pH challenge, the micro-hardness values for all groups were reduced significantly (p ≤ 0.05). The surface roughness was least with the resin-only group and showed a non-significant difference with F-BG (p = 0.34) and significant differences with both B-BG (p = 0.005), and 45S5 (p = 0.010) groups. After the pH cycle, the roughness of all groups was increased significantly (p ≤ 0.05), except B-BG group showed a non-significant difference (p = 0.528). The B-BG group showed significantly high ΔE between day 0 and baseline compared to resin-only (p = 0.0008), F-BG (p = 0.017), and 45S5 (p = 0.029), whereas between day 14 and baseline, the lowest ΔE value was observed for B-BG (14.2 ± 2.10) and maximum for the resin-only (20.57 ± 2.47) group. The SEM images showed pitting on the surface of all resin infiltrant groups after 14 days of pH challenge. CONCLUSION The morphological difference was observed after the laser irradiation on the enamel surface. The differences in micro-hardness, surface roughness, and color were observed after the application of experimental resin infiltrants and significant differences were observed after the pH challenge.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | | | | | - Hind Waleed Albilali
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ahmed Talal
- Faculty of Education, University of Ottawa, Ottawa, ON K1N 6N, Canada
| |
Collapse
|
7
|
Qiu D, Zhou P, Kang J, Chen Z, Xu Z, Yang H, Tao J, Ai F. ZnO nanoparticle modified chitosan/borosilicate bioglass composite scaffold for inhibiting bacterial infection and promoting bone regeneration. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac99c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Abstract
The treatment of implant-associated bone infection remains a significant clinical challenge. However, bone scaffolds with antimicrobial activity and osteoinductive properties can prevent these infections and improve clinical outcomes. In this study, borosilicate bioglass and chitosan composite scaffolds were prepared, and then the surface was modified with nano-zinc oxide. In vitro and in vivo experiments showed that the chitosan/borosilicate bioglass scaffolds have good degradation and osteogenic properties, while the oxidized Zinc scaffolds have better antibacterial properties.
Collapse
|
8
|
Development and characterization of PCL membranes incorporated with Zn-doped bioactive glass produced by electrospinning for osteogenesis evaluation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Tan G, Chen R, Tu X, Guo L, Guo L, Xu J, Zhang C, Zou T, Sun S, Jiang Q. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds. Front Bioeng Biotechnol 2022; 10:973886. [PMID: 36061449 PMCID: PMC9438739 DOI: 10.3389/fbioe.2022.973886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Employing scaffolds containing cell–derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM–loaded scaffolds (RAOECs–ECM scaffold and RBMSCs–ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT–PCR). In vivo, full–thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague–Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro–CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM–loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel–like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM–loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs–ECM scaffold and RBMSCs–ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.
Collapse
Affiliation(s)
- Guozhong Tan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongfeng Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinran Tu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liyang Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lvhua Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingyi Xu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| |
Collapse
|
10
|
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review. Bioengineering (Basel) 2022; 9:bioengineering9080388. [PMID: 36004914 PMCID: PMC9404869 DOI: 10.3390/bioengineering9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future.
Collapse
|
11
|
Li L, Huang Y, Qin J, Honiball JR, Wen D, Xie X, Shi Z, Cui X, Li B. Development of a borosilicate bioactive glass scaffold incorporating calcitonin gene-related peptide for tissue engineering. BIOMATERIALS ADVANCES 2022; 138:212949. [PMID: 35913241 DOI: 10.1016/j.bioadv.2022.212949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Protein delivery and release from synthetic scaffold materials are major challenges within the field of bone tissue engineering. In this study, 13-93B1.5 borosilicate bioactive glass (BSG) base paste was 3D printed to produce BSG-based scaffolds with high porosity (59.85 ± 6.04%) and large pore sizes (350-400 μm) for functionalization with a sodium alginate (SA)/calcitonin gene-related peptide (CGRP) hydrogel mixture. SA/CGRP hydrogel was uniformly filled into the interconnected pores of 3D printed BSG constructs to produce BSG-SA/CGRP scaffolds which were subject to bioactivity and biocompatibility analysis. BSG scaffolds filled with SA hydrogel underwent dissolution in simulated body fluid (SBF), resulting in the precipitation of hydroxyapatite (HA) on the borosilicate glass evidenced by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Around 90% of CGRP was released from scaffolds after 7 days of immersion in SBF, reaching a final released concentration of 893.00 ± 63.30 ng/mL. Cellular adhesion, proliferation, and differentiation of human bone marrow mesenchymal stem cells (HBMSCs) cultured with BSG-SA/CGRP scaffolds revealed improved biocompatibility and osteogenic capabilities compared with BSG-SA scaffolds in the absence of CGRP. When subcutaneously implanted in rat models, BSG-SA/CGRP scaffolds induced low localized inflammation without causing bodily harm in vivo. Findings revealed that bioactive glass scaffolds incorporating CGRP met the scaffold requirements for bone regeneration and that the addition of CGRP promoted osteogenic differentiation where it may potentially be utilized for future regenerative applications.
Collapse
Affiliation(s)
- Li Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yonghua Huang
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - Jianguo Qin
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - John Robert Honiball
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Dingfu Wen
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - Xiangtao Xie
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China
| | - Zhanying Shi
- Department of Orthopaedics, Affiliated Liuzhou Hospital of Guangxi Medical University/Liuzhou People's Hospital, Liuzhou 545026, PR China.
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Bing Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, PR China.
| |
Collapse
|
12
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Hatt LP, Thompson K, Helms JA, Stoddart MJ, Armiento AR. Clinically relevant preclinical animal models for testing novel cranio-maxillofacial bone 3D-printed biomaterials. Clin Transl Med 2022; 12:e690. [PMID: 35170248 PMCID: PMC8847734 DOI: 10.1002/ctm2.690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Bone tissue engineering is a rapidly developing field with potential for the regeneration of craniomaxillofacial (CMF) bones, with 3D printing being a suitable fabrication tool for patient-specific implants. The CMF region includes a variety of different bones with distinct functions. The clinical implementation of tissue engineering concepts is currently poor, likely due to multiple reasons including the complexity of the CMF anatomy and biology, and the limited relevance of the currently used preclinical models. The 'recapitulation of a human disease' is a core requisite of preclinical animal models, but this aspect is often neglected, with a vast majority of studies failing to identify the specific clinical indication they are targeting and/or the rationale for choosing one animal model over another. Currently, there are no suitable guidelines that propose the most appropriate animal model to address a specific CMF pathology and no standards are established to test the efficacy of biomaterials or tissue engineered constructs in the CMF field. This review reports the current clinical scenario of CMF reconstruction, then discusses the numerous limitations of currently used preclinical animal models employed for validating 3D-printed tissue engineered constructs and the need to reduce animal work that does not address a specific clinical question. We will highlight critical research aspects to consider, to pave a clinically driven path for the development of new tissue engineered materials for CMF reconstruction.
Collapse
Affiliation(s)
- Luan P. Hatt
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
- Department of Health Sciences and TechonologyInstitute for BiomechanicsETH ZürichZürichSwitzerland
| | - Keith Thompson
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Jill A. Helms
- Division of Plastic and Reconstructive SurgeryDepartment of Surgery, Stanford School of MedicineStanford UniversityPalo AltoCalifornia
| | - Martin J. Stoddart
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Angela R. Armiento
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| |
Collapse
|
14
|
Wang H, Yuan C, Lin K, Zhu R, Zhang S. Modifying a 3D-Printed Ti6Al4V Implant with Polydopamine Coating to Improve BMSCs Growth, Osteogenic Differentiation, and In Situ Osseointegration In Vivo. Front Bioeng Biotechnol 2021; 9:761911. [PMID: 34926418 PMCID: PMC8678591 DOI: 10.3389/fbioe.2021.761911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Nowadays, 3D printing technology has been applied in dentistry to fabricate customized implants. However, the biological performance is unsatisfactory. Polydopamine (PDA) has been used to immobilize bioactive agents on implant surfaces to endow them with multiple properties, such as anti-infection and pro-osteogenesis, benefiting rapid osseointegration. Herein, we fabricated a PDA coating on a 3D-printed implant surface (3D-PDA) via the in situ polymerization method. Then the 3D-PDA implants' pro-osteogenesis capacity and the osseointegration performance were evaluated in comparison with the 3D group. The in vitro results revealed that the PDA coating modification increased the hydrophilicity of the implants, promoting the improvement of the adhesion, propagation, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the 3D-PDA implant improved osteointegration performance in vivo. The present study suggested that PDA coating might be a feasible strategy to optimize 3D-printed implant surfaces, making a preliminary research basis for the subsequent work to immobilize bioactive factors on the 3D-printed implant surface.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rui Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shilei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
15
|
Abstract
Diseases or complications that are caused by bone tissue damage affect millions of patients every year. Orthopedic and dental implants have become important treatment options for replacing and repairing missing or damaged parts of bones and teeth. In order to use a material in the manufacture of implants, the material must meet several requirements, such as mechanical stability, elasticity, biocompatibility, hydrophilicity, corrosion resistance, and non-toxicity. In the 1970s, a biocompatible glassy material called bioactive glass was discovered. At a later time, several glass materials with similar properties were developed. This material has a big potential to be used in formulating medical devices, but its fragility is an important disadvantage. The use of bioactive glasses in the form of coatings on metal substrates allows the combination of the mechanical hardness of the metal and the biocompatibility of the bioactive glass. In this review, an extensive study of the literature was conducted regarding the preparation methods of bioactive glass and the different techniques of coating on various substrates, such as stainless steel, titanium, and their alloys. Furthermore, the main doping agents that can be used to impart special properties to the bioactive glass coatings are described.
Collapse
|
16
|
Cannio M, Bellucci D, Roether JA, Boccaccini DN, Cannillo V. Bioactive Glass Applications: A Literature Review of Human Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5440. [PMID: 34576662 PMCID: PMC8470635 DOI: 10.3390/ma14185440] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
The use of bioactive glasses in dentistry, reconstructive surgery, and in the treatment of infections can be considered broadly beneficial based on the emerging literature about the potential bioactivity and biocompatibility of these materials, particularly with reference to Bioglass® 45S5, BonAlive® and 19-93B3 bioactive glasses. Several investigations have been performed (i) to obtain bioactive glasses in different forms, such as bulk materials, powders, composites, and porous scaffolds and (ii) to investigate their possible applications in the biomedical field. Although in vivo studies in animals provide us with an initial insight into the biological performance of these systems and represent an unavoidable phase to be performed before clinical trials, only clinical studies can demonstrate the behavior of these materials in the complex physiological human environment. This paper aims to carefully review the main published investigations dealing with clinical trials in order to better understand the performance of bioactive glasses, evaluate challenges, and provide an essential source of information for the tailoring of their design in future applications. Finally, the paper highlights the need for further research and for specific studies intended to assess the effect of some specific dissolution products from bioactive glasses, focusing on their osteogenic and angiogenic potential.
Collapse
Affiliation(s)
- Maria Cannio
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| | - Judith A. Roether
- Department of Materials Science and Engineering, Institute for Polymer Materials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (M.C.); (D.B.)
| |
Collapse
|