1
|
Wang Y, Chen Y, Zhang A, Chen K, Ouyang P. Advances in the microbial synthesis of the neurotransmitter serotonin. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12584-3. [PMID: 37326681 DOI: 10.1007/s00253-023-12584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: • Two biosynthesis pathways of serotonin are introduced. • L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. • Effective strategies are proposed to improve serotonin production.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
2
|
Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan L, Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front Microbiol 2023; 14:1099098. [PMID: 37032885 PMCID: PMC10076799 DOI: 10.3389/fmicb.2023.1099098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Tryptophan derivatives are various aromatic compounds produced in the tryptophan metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-3-acetic acid, violamycin, and dexoyviolacein. They have high added value, widely used in chemical, food, polymer and pharmaceutical industry and play an important role in treating diseases and improving life. At present, most tryptophan derivatives are synthesized by biosynthesis. The biosynthesis method is to combine metabolic engineering with synthetic biology and system biology, and use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium glutamicum and other related microorganisms to reconstruct the artificial biosynthesis pathway, and then produce various tryptophan derivatives. In this paper, the characteristics, applications and specific biosynthetic pathways and methods of these derivatives were reviewed, and some strategies to increase the yield of derivatives and reduce the production cost on the basis of biosynthesis were introduced in order to make some contributions to the development of tryptophan derivatives biosynthesis industry.
Collapse
Affiliation(s)
- Shujian Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| |
Collapse
|
3
|
Zeng Y, Song J, Zhang Y, Huang Y, Zhang F, Suo H. Promoting Effect and Potential Mechanism of Lactobacillus pentosus LPQ1-Produced Active Compounds on the Secretion of 5-Hydroxytryptophan. Foods 2022; 11:foods11233895. [PMID: 36496703 PMCID: PMC9740157 DOI: 10.3390/foods11233895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
5-hydroxytryptophan (5-HTP) is an important substance thought to improve depression. It has been shown that Lactobacillus can promote the secretion of 5-HTP in the body and thus ameliorate depression-like behavior in mice. However, the mechanism by which Lactobacillus promotes the secretion of 5-HTP is unclear. In this study, we investigated the promoting effect and mechanism of Lactobacillus, isolated from Chinese fermented foods, on the secretion of 5-HTP. The results showed that Lactobacillus (L.) pentosus LPQ1 exhibited the strongest 5-HTP secretion-promoting effect ((9.44 ± 0.69)-fold), which was dependent on the mixture of compounds secreted by L. pentosus LPQ1 (termed SLPQ1). In addition, the results of the RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that SLPQ1 alters the TNF and oxidative phosphorylation signaling pathways. Moreover, the SLPQ1 ultrafiltration fraction (>10 kDa) showed a similar 5-HTP promoting effect as SLPQ1. Furthermore, reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) identified 29 compounds of >10 kDa in SLPQ1, including DUF488 domain-containing protein, BspA family leucine-rich repeat surface protein, and 30S ribosomal protein S5, which together accounted for up to 62.51%. This study reports new findings on the mechanism by which L. pentosus LPQ1 promotes 5-HTP production in some cell lines in vitro.
Collapse
Affiliation(s)
- Yixiu Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Feng Zhang
- Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
4
|
Zhang Z, Yu Z, Wang J, Yu Y, Li L, Sun P, Fan X, Xu Q. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose. Microb Cell Fact 2022; 21:198. [PMID: 36153615 PMCID: PMC9509612 DOI: 10.1186/s12934-022-01920-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background 5-hydroxytryptophan (5-HTP), the direct biosynthetic precursor of the neurotransmitter 5-hydroxytryptamine, has been shown to have unique efficacy in the treatment of a variety of disorders, including depression, insomnia, and chronic headaches, and is one of the most commercially valuable amino acid derivatives. However, microbial fermentation for 5-HTP production continues to face many challenges, including low titer/yield and the presence of the intermediate L-tryptophan (L-Trp), owing to the complexity and low activity of heterologous expression in prokaryotes. Therefore, there is a need to construct an efficient microbial cell factory for 5-HTP production. Results We describe the systematic modular engineering of wild-type Escherichia coli for the efficient fermentation of 5-HTP from glucose. First, a xylose-induced T7 RNA polymerase-PT7 promoter system was constructed to ensure the efficient expression of each key heterologous pathway in E. coli. Next, a new tryptophan hydroxylase mutant was used to construct an efficient tryptophan hydroxylation module, and the cofactor tetrahydrobiopterin synthesis and regeneration pathway was expressed in combination. The L-Trp synthesis module was constructed by modifying the key metabolic nodes of tryptophan biosynthesis, and the heterologous synthesis of 5-HTP was achieved. Finally, the NAD(P)H regeneration module was constructed by the moderate expression of the heterologous GDHesi pathway, which successfully reduced the surplus of the intermediate L-Trp. The final engineered strain HTP11 was able to produce 8.58 g/L 5-HTP in a 5-L bioreactor with a yield of 0.095 g/g glucose and a maximum real-time productivity of 0.48 g/L/h, the highest values reported by microbial fermentation. Conclusion In this study, we demonstrate the successful design of a cell factory for high-level 5-HTP production, combined with simple processes that have potential for use in industrial applications in the future. Thus, this study provides a reference for the production of high-value amino acid derivatives using a systematic modular engineering strategy and a basis for an efficient engineered strain development of 5-HTP high-value derivatives. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01920-3.
Collapse
|
5
|
Pulmonary embolism and 529 human blood metabolites: genetic correlation and two-sample Mendelian randomization study. BMC Genom Data 2022; 23:69. [PMID: 36038828 PMCID: PMC9422150 DOI: 10.1186/s12863-022-01082-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of pulmonary embolism complications in the literature ranges from 10 to 50%, with a 0.5-10% risk of fatal pulmonary embolism. However, the biological cause of pulmonary embolism is unknown. METHODS This study used data from the Genome-Wide Association Study (GWAS) of Pulmonary Embolism and Human Blood Metabolites from the UK Biobank, and the data from subjects of European ancestry were analyzed. We explored the relationship between pulmonary embolism and blood metabolites in three ways. We first analyzed the genetic correlation between pulmonary embolism and human blood metabolites using the linkage disequilibrium score regression (LDSC) and then analyzed the causal relationship between pulmonary embolism and meaningful blood metabolites obtained from the LDSC, a procedure for which we used Mendelian randomization analysis. Finally, we obtained transcriptome sequencing data for patients with a pulmonary embolism from the GEO database, analyzed differentially expressed genes (DEGs) in patients with pulmonary embolism versus healthy populations, and compared the DEGs with the resulting blood metabolite genes to further validate the relationship between pulmonary embolism and blood metabolites. RESULT We found six human blood metabolites genetically associated with pulmonary embolism, stearic acid glycerol phosphate ethanolamine (correlation coefficient = 0.2582, P = 0.0493), hydroxytryptophan (correlation coefficient = 0.2894, P = 0.0435), and N1-methyladenosine (correlation coefficient = 0.0439, P = 0.3728), and a significant causal relationship was discovered between hydroxytryptophan and pulmonary embolism. After screening microarray data from the GEO database, we performed differential gene analysis on the GSE19151 dataset and screened a total of 22,216 genes with P values less than 0.05, including 17,361 upregulated genes and 4854 downregulated genes. By comparing the resulting differentially expressed genes with six genes encoding blood metabolites, LIPC and NAT2 were found to be differentially expressed in association with pulmonary embolism.
Collapse
|
6
|
Wang Y, Chen X, Chen Q, Zhou N, Wang X, Zhang A, Chen K, Ouyang P. Construction of cell factory capable of efficiently converting L-tryptophan into 5-hydroxytryptamine. Microb Cell Fact 2022; 21:47. [PMID: 35331215 PMCID: PMC8944007 DOI: 10.1186/s12934-022-01745-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND L-Tryptophan (L-Trp) derivatives such as 5-hydroxytryptophan (5-HTP) and 5-hydroxytryptamine (5-HT), N-Acetyl-5-hydroxytryptamine and melatonin are important molecules with pharmaceutical interest. Among, 5-HT is an inhibitory neurotransmitter with proven benefits for treating the symptoms of depression. At present, 5-HT depends on plant extraction and chemical synthesis, which limits its mass production and causes environmental problems. Therefore, it is necessary to develop an efficient, green and sustainable biosynthesis method to produce 5-HT. RESULTS Here we propose a one-pot production of 5-HT from L-Trp via two enzyme cascades for the first time. First, a chassis cell that can convert L-Trp into 5-HTP was constructed by heterologous expression of tryptophan hydroxylase from Schistosoma mansoni (SmTPH) and an artificial endogenous tetrahydrobiopterin (BH4) module. Then, dopa decarboxylase from Harminia axyridis (HaDDC), which can specifically catalyse 5-HTP to 5-HT, was used for 5-HT production. The cell factory, E. coli BL21(DE3)△tnaA/BH4/HaDDC-SmTPH, which contains SmTPH and HaDDC, was constructed for 5-HT synthesis. The highest concentration of 5-HT reached 414.5 ± 1.6 mg/L (with conversion rate of 25.9 mol%) at the optimal conditions (substrate concentration,2 g/L; induced temperature, 25℃; IPTG concentration, 0.5 mM; catalysis temperature, 30℃; catalysis time, 72 h). CONCLUSIONS This protocol provided an efficient one-pot method for converting. L-Trp into 5-HT production, which opens up possibilities for the practical biosynthesis of natural 5-HT at an industrial scale.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xueman Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiaoyu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
7
|
Adamo D, Calabria E, Coppola N, Lo Muzio L, Giuliani M, Azzi L, Maurino V, Colella G, Rauso R, Montebugnoli L, Gissi DB, Gabriele M, Nisi M, Sardella A, Lodi G, Varoni EM, Giudice A, Antonelli A, Cabras M, Gambino A, Vescovi P, Majorana A, Bardellini E, Campisi G, Panzarella V, Spadari F, Marino S, Pentenero M, Sutera S, Biasotto M, Gobbo M, Guarda Nardini L, Romeo U, Tenore G, Serpico R, Lucchese A, Lajolo C, Rupe C, Aria M, Gnasso A, Mignogna MD. Assessment of sleep disturbance in oral lichen planus and validation of PSQI: A case-control multicenter study from the SIPMO (Italian Society of Oral Pathology and Medicine). J Oral Pathol Med 2021; 51:194-205. [PMID: 34704302 DOI: 10.1111/jop.13255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The wellbeing of oral lichen planus patients (OLPs) may be strongly influenced by a poor quality of sleep (QoS) and psychological impairment. The aims were to analyze the prevalence of sleep disturbance, anxiety, and depression in OLPs and to validate the Pittsburgh Sleep Quality Index (PSQI) in OLPs. METHODS Three hundred keratotic OLPs (K-OLPs), 300 with predominant non-keratotic OLP (nK-OLPs), and 300 controls were recruited in 15 Italian universities. The PSQI, Epworth Sleepiness Scale (ESS), Hamilton Rating Scales for Depression and Anxiety (HAM-D and HAM-A), Numeric Rating Scale (NRS), and Total Pain Rating Index (T-PRI) were administered. RESULTS Oral lichen planus patients had statistically higher scores than the controls in the majority of the PSQI sub-items (p-values < 0.001**). Moreover, OLPs had higher scores in the HAM-D, HAM-A, NRS, and T-PRI (p-values < 0.001**). No differences in the PSQI sub-items' scores were found between the K-OLPs and nK-OLPs, although nK-OLPs suffered from higher levels of anxiety, depression, and pain (p-values: HAM-A, 0.007**, HAM-D, 0.009**, NRS, <0.001**, T-PRI, <0.001**). The female gender, anxiety, depression (p-value: 0.007**, 0.001**, 0.020*) and the intensity of pain, anxiety, and depression (p-value: 0.006**, <0.001**, 0.014*) were independent predictors of poor sleep (PSQI > 5) in K-OLPs and nK-OLPs, respectively. The PSQI's validation demonstrated good internal consistency and reliability of both the total and subscale of the PSQI. CONCLUSIONS The OLPs reported an overall impaired QoS, which seemed to be an independent parameter according to the regression analysis. Hence, clinicians should assess QoS in OLPs and treat sleep disturbances in order to improve OLPs management.
Collapse
Affiliation(s)
- Daniela Adamo
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Elena Calabria
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Noemi Coppola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Azzi
- Department of Medicine and Surgery, Unit of Oral Medicine and Pathology, ASST dei Sette Laghi, University of Insubria, Varese, Italy
| | - Vittorio Maurino
- Department of Medicine and Surgery, Unit of Oral Medicine and Pathology, ASST dei Sette Laghi, University of Insubria, Varese, Italy
| | - Giuseppe Colella
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Rauso
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucio Montebugnoli
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Davide Bartolomeo Gissi
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Mario Gabriele
- Department of Surgical Pathology, Medicine, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Marco Nisi
- Department of Surgical Pathology, Medicine, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Andrea Sardella
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Giovanni Lodi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Amerigo Giudice
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Antonelli
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Marco Cabras
- Oral Medicine Section, Department of Surgical Science, CIR Dental School, University of Turin, Turin, Italy
| | - Alessio Gambino
- Oral Medicine Section, Department of Surgical Science, CIR Dental School, University of Turin, Turin, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery, Oral Medicine and Laser Surgery Unit, University Center of Dentistry, University of Parma, Parma, Italy
| | - Alessandra Majorana
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elena Bardellini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, Palermo, Italy
| | - Vera Panzarella
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesco Spadari
- Department of Biomedical, Surgical and Dental Sciences, Maxillo-facial and Dental Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. University of Milan, Milan, Italy
| | - Sonia Marino
- Department of Biomedical, Surgical and Dental Sciences, Maxillo-facial and Dental Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. University of Milan, Milan, Italy
| | - Monica Pentenero
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Samuele Sutera
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Matteo Biasotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Margherita Gobbo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Unit of Oral and Maxillofacial Surgery, Ca' Foncello Hospital, Treviso, Italy
| | - Luca Guarda Nardini
- Unit of Oral and Maxillofacial Surgery, Ca' Foncello Hospital, Treviso, Italy
| | - Umberto Romeo
- Department of Oral Sciences and Maxillofacial Surgery, University of Rome La Sapienza, Rome, Italy
| | - Gianluca Tenore
- Department of Oral Sciences and Maxillofacial Surgery, University of Rome La Sapienza, Rome, Italy
| | - Rosario Serpico
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alberta Lucchese
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Carlo Lajolo
- Head and Neck Department, School of Dentistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cosimo Rupe
- Head and Neck Department, School of Dentistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University Federico II of Naples, Naples, Italy
| | - Agostino Gnasso
- Department of Economics and Statistics, University Federico II of Naples, Naples, Italy
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|