1
|
Lei Q, Phan TH, Divakarla SK, Kalionis B, Chrzanowski W. Metals in nanomotion: probing the role of extracellular vesicles in intercellular metal transfer. NANOSCALE 2024; 16:19730-19742. [PMID: 39355972 DOI: 10.1039/d4nr02841d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Metals in living organisms and environments are essential for key biological functions such as enzymatic activity, and DNA and RNA synthesis. This means that disruption of metal ion homeostasis and exchange between cells can lead to diseases. EVs are believed to play an essential role in transporting metals between cells, but the mechanism of metal packaging and exchange remains to be elucidated. Here, we established the elemental composition of EVs at the nanoscale and single-vesicle level and showed that the metal content depends on the cell type and culture microenvironment. We also demonstrated that EVs participate in the exchange of metal elements between cells. Specifically, we used two classes of EVs derived from papaya fermented fluid (PaEVs), and decidual mesenchymal stem/stromal cells (DEVs). To show that EVs transfer metal elements to cells, we treated human osteoblast-like cells (MG63) and bone marrow mesenchymal stem cells (BMMSCs) with both classes of EVs. We found that both classes of EVs contained various metal elements, such as Ca, P, Mg, Fe, Na, Zn, and K, originating from their parent cells, but their relative concentrations did not mirror the ones found in the parent cells. Single-particle analysis of P, Ca, and Fe in DEVs and PaEVs revealed varying element masses. Assuming spherical geometry, the mean mass of P was converted to a mean size of 62 nm in DEVs and 24 nm in PaEVs, while the mean sizes of Ca and Fe in DEVs were smaller, converting to 20 nm and 30 nm respectively. When EVs interacted with BMMSCs and MG63, DEVs increased Ca, P, and Fe concentrations in BMMSCs and increased Fe concentration in MG63, while PaEVs increased Ca concentrations in BMMSCs and had no effect on MG63. The EV cargo, including proteins, nucleic acids, and lipids, differs from their origin in composition, and this variation extends to the element composition of EVs in our study. This fundamental understanding of EV-mediated metal exchange between cells could offer a new way of assessing EV functionality by measuring their elemental composition. Additionally, it will contribute novel insights into the mechanisms underlying EV production and their biological activity.
Collapse
Affiliation(s)
- Qingyu Lei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia.
| | - Thanh H Phan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW, Australia
| | | | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia.
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| |
Collapse
|
2
|
Chatterjee A, Pratakshya P, Kwansa AL, Kaimal N, Cannon AH, Sartori B, Marmiroli B, Orins H, Feng Z, Drake S, Couvrette J, Le L, Bernstorff S, Yingling YG, Gorodetsky AA. Squid Skin Cell-Inspired Refractive Index Mapping of Cells, Vesicles, and Nanostructures. ACS Biomater Sci Eng 2023; 9:978-990. [PMID: 36692450 DOI: 10.1021/acsbiomaterials.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fascination with the optical properties of naturally occurring systems has been driven in part by nature's ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index material─a protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques.
Collapse
Affiliation(s)
- Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Preeta Pratakshya
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Albert L Kwansa
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikhil Kaimal
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Andrew H Cannon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Helen Orins
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Zhijing Feng
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Drake
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Justin Couvrette
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - LeAnn Le
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | | | - Yaroslava G Yingling
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alon A Gorodetsky
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Loch-Neckel G, Matos AT, Vaz AR, Brites D. Challenges in the Development of Drug Delivery Systems Based on Small Extracellular Vesicles for Therapy of Brain Diseases. Front Pharmacol 2022; 13:839790. [PMID: 35422699 PMCID: PMC9002061 DOI: 10.3389/fphar.2022.839790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEVs) have ∼30–200 nm diameter size and may act as carriers of different cargoes, depending on the cell of origin or on the physiological/pathological condition. As endogenous nanovesicles, sEVs are important in intercellular communication and have many of the desirable features of an ideal drug delivery system. sEVs are naturally biocompatible, with superior targeting capability, safety profile, nanometric size, and can be loaded with both lipophilic and hydrophilic agents. Because of their biochemical and physical properties, sEVs are considered a promising strategy over other delivery vehicles in the central nervous system (CNS) since they freely cross the blood-brain barrier and they can be directed to specific nerve cells, potentiating a more precise targeting of their cargo. In addition, sEVs remain stable in the peripheral circulation, making them attractive nanocarrier systems to promote neuroregeneration. This review focuses on the recent progress in methods for manufacturing, isolating, and engineering sEVs that can be used as a therapeutic strategy to overcome neurodegeneration associated with pathologies of the CNS, with particular emphasis on Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis diseases, as well as on brain tumors.
Collapse
Affiliation(s)
- Gecioni Loch-Neckel
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Phan TH, Kim SY, Rudge C, Chrzanowski W. Made by cells for cells - extracellular vesicles as next-generation mainstream medicines. J Cell Sci 2022; 135:273969. [PMID: 35019142 DOI: 10.1242/jcs.259166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Current medicine has only taken us so far in reducing disease and tissue damage. Extracellular vesicles (EVs), which are membranous nanostructures produced naturally by cells, have been hailed as a next-generation medicine. EVs deliver various biomolecules, including proteins, lipids and nucleic acids, which can influence the behaviour of specific target cells. Since EVs not only mirror composition of their parent cells but also modify the recipient cells, they can be used in three key areas of medicine: regenerative medicine, disease detection and drug delivery. In this Review, we discuss the transformational and translational progress witnessed in EV-based medicine to date, focusing on two key elements: the mechanisms by which EVs aid tissue repair (for example, skin and bone tissue regeneration) and the potential of EVs to detect diseases at an early stage with high sensitivity and specificity (for example, detection of glioblastoma). Furthermore, we describe the progress and results of clinical trials of EVs and demonstrate the benefits of EVs when compared with traditional medicine, including cell therapy in regenerative medicine and solid biopsy in disease detection. Finally, we present the challenges, opportunities and regulatory framework confronting the clinical application of EV-based products.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney School of Pharmacy, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christopher Rudge
- The University of Sydney, Sydney Health Law, New Law Building F10, Camperdown, NSW 2006, Australia
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney School of Pharmacy, Pharmacy and Bank Building A15, Camperdown, NSW 2006, Australia
| |
Collapse
|
5
|
Advances in the Field of Micro- and Nanotechnologies Applied to Extracellular Vesicle Research: Take-Home Message from ISEV2021. MICROMACHINES 2021; 12:mi12121563. [PMID: 34945413 PMCID: PMC8707249 DOI: 10.3390/mi12121563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Extracellular Vesicles (EVs) are naturally secreted nanoparticles with a plethora of functions in the human body and remarkable potential as diagnostic and therapeutic tools. Starting from their discovery, EV nanoscale dimensions have hampered and slowed new discoveries in the field, sometimes generating confusion and controversies among experts. Microtechnological and especially nanotechnological advances have sped up biomedical research dealing with EVs, but efforts are needed to further clarify doubts and knowledge gaps. In the present review, we summarize some of the most interesting data presented in the Annual Meeting of the International Society for Extracellular Vesicles (ISEV), ISEV2021, to stimulate discussion and to share knowledge with experts from all fields of research. Indeed, EV research requires a multidisciplinary knowledge exchange and effort. EVs have demonstrated their importance and significant biological role; still, further technological achievements are crucial to avoid artifacts and misleading conclusions in order to enable outstanding discoveries.
Collapse
|