1
|
Liu CH, Jheng PR, Rethi L, Godugu C, Lee CY, Chen YT, Nguyen HT, Chuang EY. P-Selectin mediates targeting of a self-assembling phototherapeutic nanovehicle enclosing dipyridamole for managing thromboses. J Nanobiotechnology 2023; 21:260. [PMID: 37553670 PMCID: PMC10408148 DOI: 10.1186/s12951-023-02018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chandraiah Godugu
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Hyderabad, India
| | - Ching Yi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Main Branch and School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, 700000, Viet Nam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Wang Z, Pan Y, Huang H, Zhang Y, Li Y, Zou C, Huang G, Chen Y, Li Y, Li J, Chen H. Enhanced thrombolysis by endovascular low-frequency ultrasound with bifunctional microbubbles in venous thrombosis: in vitro and in vivo study. Front Bioeng Biotechnol 2022; 10:965769. [PMID: 35942007 PMCID: PMC9356075 DOI: 10.3389/fbioe.2022.965769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
There is a need to improve the efficacy and safety of endovascular techniques in venous thrombotic diseases, and microbubble enhanced sonothrombolysis is a promising approach. However, whether endovascular low-frequency ultrasound (LFUS) can be utilized in microbubble enhanced sonothrombolysis is unclear. Here, we present a catheter-based thrombolytic system that combines unfocused low-frequency low-intensity ultrasound with novel fibrin-targeted drug-loaded bifunctional microbubbles. We develop an in vitro flow model and an in vivo rabbit inferior vena cava (IVC) thrombosis model to evaluate the safety and efficacy of the thrombolytic system. The results indicate that microbubble enhanced sonothrombolysis with endovascular LFUS treatment for 30 min is equally effective compared to pure pharmacologic treatment. Furthermore, the thrombolytic efficacy of this system is safely and substantially improved by the introduction of a fibrin-targeted drug-loaded bifunctional microbubble with a reduction of the fibrinolytic agent dosage by 60%. The microbubble enhanced endovascular LFUS sonothrombolysis system with excellent thrombolytic efficacy may serve as a new therapeutic approach for venous thrombotic diseases.
Collapse
Affiliation(s)
- Zhaojian Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Huaigu Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Chenghong Zou
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanghua Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuexin Chen, ; Yongjian Li,
| | - Yongjian Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
- *Correspondence: Yuexin Chen, ; Yongjian Li,
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Chaudhary A, Setia A, Singh D, Bhattacharya S. The potential of microbubbles as a cancer eradication theranostic agent. Pharm Nanotechnol 2022; 10:PNT-EPUB-124508. [PMID: 35708092 DOI: 10.2174/2211738510666220615154841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/16/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
Abstract
Microbubbles are a new kind of delivery system that may be used to treat a variety of illnesses, including cancer. Microbubble is a non-invasive technology that uses microscopic gas-filled colloidal particle bubbles with a size range of less than 100 micrometres. This unique carrier has been used in a variety of applications in the last decade, ranging from basic targeting to ultrasound-mediated drug delivery. The oxygen in the microbubble lasts longer in the water. The drug release mechanism is highly regulated, since it releases the medication only in the appropriate areas, increasing the local impact while reducing drug toxicity. This carrier is exceptional in cancer medication delivery because of its sustained stability, encapsulation efficiency, and drug targeting. In this paper, we provide a comprehensive analysis of microbubble technology, including its manufacturing techniques and use in cancer medication delivery.
Collapse
Affiliation(s)
- Atul Chaudhary
- Department of Pharmaceutics ISF College of Pharmacy, GT Road (NH-95), GhalKalan,Moga, Punjab 142001, Inida
| | - Aseem Setia
- Department of Pharmacy, Shri Rawatpura Sarkar University, Raipur (C.G.). Inida
| | - Dilpreet Singh
- Department of Pharmaceutics ISF College of Pharmacy, GT Road (NH-95), GhalKalan,Moga, Punjab 142001, Inida
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management Shirpur, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
4
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|