1
|
Zhang C, Zheng K, Li C, Zhang R, Zhu Y, Xia L, Ma Y, Wyss HM, Cheng X, He S. Single-Molecule Protein Analysis by Centrifugal Droplet Immuno-PCR with Magnetic Nanoparticles. Anal Chem 2024; 96:1872-1879. [PMID: 38225884 DOI: 10.1021/acs.analchem.3c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Detecting proteins in ultralow concentrations in complex media is important for many applications but often relies on complicated techniques. Herein, a single-molecule protein analyzer with the potential for high-throughput applications is reported. Gold-coated magnetic nanoparticles with DNA-labeled antibodies were used for target recognition and separation. The immunocomplex was loaded into microdroplets generated with centrifugation. Immuno-PCR amplification of the DNA enabled the quantification of proteins at the level of single molecules. As an example, ultrasensitive detection of α-synuclein, a biomarker for neurodegenerative diseases, is achieved. The limit of detection was determined to be ∼50 aM in buffer and ∼170 aM in serum. The method exhibited high specificity and could be used to analyze post-translational modifications such as protein phosphorylation. This study will inspire wider studies on single-molecule protein detection, especially in disease diagnostics, biomarker discovery, and drug development.
Collapse
Affiliation(s)
- Chuan Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Chi Li
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ranran Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Zhu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Linxiao Xia
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Ma
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Hans M Wyss
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44, Sweden
| |
Collapse
|
2
|
Ye Y, Hou S, Wu X, Cheng X, He S. Freeze-Driven Adsorption of Poly-A DNA on Gold Nanoparticles: From a Stable Biointerface to Plasmonic Dimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4625-4632. [PMID: 35403423 PMCID: PMC9022424 DOI: 10.1021/acs.langmuir.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Increasing attention is paid to poly-adenine (poly-A) DNA-functionalized gold nanoparticles due to the high cost of thiols. Freezing is an effective approach for immobilizing poly-A DNA on gold nanoparticles, but its mechanism remains elusive. To cope with this issue, in this paper, some experimental insights are provided. It is shown that (1) the DNA loading density is independent of the length of poly-A. (2) DNA is densely packed on gold nanoparticles, and the biointerface is peculiarly stable, which is not in line with the existing "wrapping" model. (3) Using a DNA-staining dye, thiazole orange, it is shown that poly-A duplex structures are formed on the surface of gold nanoparticles, with evidence given by fluorescence and Raman measurements. An alternative model involving stable poly-A duplexes anchored by finite terminal adenines is proposed. Based on it, a strategy for constructing plasmonic dimers is developed, using freeze-driven adsorption of a DNA sequence with poly-adenine at both ends. This work provides insights into the reaction between poly-A DNA and AuNPs upon freezing and is expected to facilitate related research in biosensor development and nanotechnology.
Collapse
Affiliation(s)
- Yang Ye
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Saimei Hou
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Xiaomo Wu
- Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, China
| | - Xiaoyu Cheng
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Sailing He
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
3
|
Khizar S, Elaissari A, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A. Advancement in Nanoparticle-Based Biosensors for Point-of-Care In Vitro Diagnostics. Curr Top Med Chem 2022; 22:807-833. [DOI: 10.2174/1568026622666220401160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilizations within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here we review the nanoparticles' contribution to the biosensors field and their potential applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Amal Ali Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| |
Collapse
|
4
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|