1
|
Peng F, Giacomelli G, Meyer F, Linder M, Haak M, Rückert-Reed C, Weiß M, Kalinowski J, Bramkamp M. Early onset of septal FtsK localization allows for efficient DNA segregation in SMC-deleted Corynebacterium glutamicum strains. mBio 2025:e0285924. [PMID: 39873485 DOI: 10.1128/mbio.02859-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of smc causes severe growth phenotypes in many organisms. Surprisingly, smc can be deleted in Corynebacterium glutamicum, a member of the Actinomycetota phylum, without any apparent growth phenotype. SMC in C. glutamicum is loaded in a ParB-dependent fashion to the chromosome and functions in replichore cohesion. The unexpected absence of a growth phenotype in the smc mutant prompted us to screen for synthetic interactions within C. glutamicum. We generated a high-density Tn5 library from wild-type and smc-deleted C. glutamicum strains. Transposon sequencing data revealed that the DNA translocase FtsK is essential in an smc-deletion strain. In wild-type cells, FtsK localized to the septa and cell poles, showing polar enrichment during the earlier stages of the life cycle and relocating to the septum in the later stages. However, deletion of smc resulted in an earlier onset of pole-to-septum FtsK relocation, suggesting that prolonged FtsK complex activity is both required and sufficient to compensate for the absence of SMC, thus achieving efficient chromosome segregation in C. glutamicum. Deletion of ParB increases SMC and FtsK mobility. While the change in SMC dynamics aligns with previous data showing ParB's role in SMC loading on DNA, the change in FtsK mobility suggests defects in chromosome segregation. Based on our data, we propose an efficient mechanism for reliable DNA segregation in the absence of replichore arm cohesion in smc mutant cells.IMPORTANCEFaithful DNA segregation is of fundamental importance for life. Bacteria have developed efficient systems to coordinate chromosome compaction, DNA segregation, and cell division. A key factor in DNA compaction is the SMC complex that is found to be essential in many bacteria. In members of the Actinomycetota, smc is dispensable, but the reason for the lack of an smc phenotype in these bacteria remained unclear. We show here that the divisome-associated DNA pump FtsK can compensate for SMC loss and the subsequent loss in correct chromosome organization. In cells with distorted chromosomes, FtsK is recruited and stabilized earlier to the septum, allowing for DNA segregation for a larger part of the cell cycle, until chromosomes are segregated.
Collapse
Affiliation(s)
- Feng Peng
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Fabian Meyer
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marten Linder
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Markus Haak
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert-Reed
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Manuela Weiß
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBitec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
2
|
Ravagnan G, Schmid J. Promising non-model microbial cell factories obtained by genome reduction. Front Bioeng Biotechnol 2024; 12:1427248. [PMID: 39161352 PMCID: PMC11330790 DOI: 10.3389/fbioe.2024.1427248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
The development of sustainable processes is the most important basis to realize the shift from the fossil-fuel based industry to bio-based production. Non-model microbes represent a great resource due to their advantageous traits and unique repertoire of bioproducts. However, most of these microbes require modifications to improve their growth and production capacities as well as robustness in terms of genetic stability. For this, genome reduction is a valuable and powerful approach to meet industry requirements and to design highly efficient production strains. Here, we provide an overview of various genome reduction approaches in prokaryotic microorganisms, with a focus on non-model organisms, and highlight the example of a successful genome-reduced model organism chassis. Furthermore, we discuss the advances and challenges of promising non-model microbial chassis.
Collapse
Affiliation(s)
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Rahman MS, Shimul MEK, Parvez MAK. Comprehensive analysis of genomic variation, pan-genome and biosynthetic potential of Corynebacterium glutamicum strains. PLoS One 2024; 19:e0299588. [PMID: 38718091 PMCID: PMC11078359 DOI: 10.1371/journal.pone.0299588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
Corynebacterium glutamicum is a non-pathogenic species of the Corynebacteriaceae family. It has been broadly used in industrial biotechnology for the production of valuable products. Though it is widely accepted at the industrial level, knowledge about the genomic diversity of the strains is limited. Here, we investigated the comparative genomic features of the strains and pan-genomic characteristics. We also observed phylogenetic relationships among the strains based on average nucleotide identity (ANI). We found diversity between strains at the genomic and pan-genomic levels. Less than one-third of the C. glutamicum pan-genome consists of core genes and soft-core genes. Whereas, a large number of strain-specific genes covered about half of the total pan-genome. Besides, C. glutamicum pan-genome is open and expanding, which indicates the possible addition of new gene families to the pan-genome. We also investigated the distribution of biosynthetic gene clusters (BGCs) among the strains. We discovered slight variations of BGCs at the strain level. Several BGCs with the potential to express novel bioactive secondary metabolites have been identified. Therefore, by utilizing the characteristic advantages of C. glutamicum, different strains can be potential applicants for natural drug discovery.
Collapse
Affiliation(s)
- Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Bioinformatics and Microbial Biotechnology Laboratory, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Bioinformatics and Microbial Biotechnology Laboratory, Jashore University of Science and Technology, Jashore, Bangladesh
| | | |
Collapse
|
4
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|