1
|
Wang W, Ren H, Ci Z, Yuan X, Zhang P, Wang C. Control Method of Upper Limb Rehabilitation Exoskeleton for Better Assistance: A Comprehensive Review. J FIELD ROBOT 2024. [DOI: 10.1002/rob.22455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/05/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTThe upper limb rehabilitation exoskeleton is a robotic‐arm‐like device that fits the human upper limb and assists in movement, having the potential to be widely used in medical practice. The control method of the upper limb rehabilitation exoskeleton system is an important factor that affects the effectiveness of its rehabilitation training assistance and is also the focus of research in this field. In this article, we divide the control method of the upper limb rehabilitation exoskeleton into two levels, the high‐level control mode (including passive mode, active mode, and ANN, etc.) and the low‐level controller. The design of the controller aims to meet the requirements of the control mode but faces difficulties such as complex dynamic models of the system, unknown external disturbances, and motion intention recognition to achieve accurate motion trajectory tracking and flexible human–robot interaction. Based on relevant literature in the field of upper limb rehabilitation exoskeleton control methods in recent years, we analyze the rehabilitation training control modes that researchers aim to achieve, as well as the work they have done in controller design to achieve these control modes. We also propose potential research directions for achieving better exoskeleton‐assisted training effects.
Collapse
Affiliation(s)
- Wendong Wang
- School of Mechanical Engineering Northwestern Polytechnical University Xi'an China
- Chongqing Innovation Center Northwestern Polytechnical University Chongqing China
| | - Huizhao Ren
- School of Mechanical Engineering Northwestern Polytechnical University Xi'an China
| | - Zelin Ci
- School of Mechanical Engineering Northwestern Polytechnical University Xi'an China
| | - Xiaoqing Yuan
- School of Mechanical Engineering Northwestern Polytechnical University Xi'an China
| | - Peng Zhang
- Training Center for Engineering Practices Northwestern Polytechnical University Xi'an China
| | - Chenyang Wang
- School of Mechanical Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
2
|
Verdel D, Farr A, Devienne T, Vignais N, Berret B, Bruneau O. Human movement modifications induced by different levels of transparency of an active upper limb exoskeleton. Front Robot AI 2024; 11:1308958. [PMID: 38327825 PMCID: PMC10847271 DOI: 10.3389/frobt.2024.1308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Active upper limb exoskeletons are a potentially powerful tool for neuromotor rehabilitation. This potential depends on several basic control modes, one of them being transparency. In this control mode, the exoskeleton must follow the human movement without altering it, which theoretically implies null interaction efforts. Reaching high, albeit imperfect, levels of transparency requires both an adequate control method and an in-depth evaluation of the impacts of the exoskeleton on human movement. The present paper introduces such an evaluation for three different "transparent" controllers either based on an identification of the dynamics of the exoskeleton, or on force feedback control or on their combination. Therefore, these controllers are likely to induce clearly different levels of transparency by design. The conducted investigations could allow to better understand how humans adapt to transparent controllers, which are necessarily imperfect. A group of fourteen participants were subjected to these three controllers while performing reaching movements in a parasagittal plane. The subsequent analyses were conducted in terms of interaction efforts, kinematics, electromyographic signals and ergonomic feedback questionnaires. Results showed that, when subjected to less performing transparent controllers, participants strategies tended to induce relatively high interaction efforts, with higher muscle activity, which resulted in a small sensitivity of kinematic metrics. In other words, very different residual interaction efforts do not necessarily induce very different movement kinematics. Such a behavior could be explained by a natural human tendency to expend effort to preserve their preferred kinematics, which should be taken into account in future transparent controllers evaluation.
Collapse
Affiliation(s)
- Dorian Verdel
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
- Laboratoire Universitaire de Recherche en Production Automatisée, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
- Human Robotics Group, Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, United-Kingdom
| | - Anais Farr
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
- ENS Rennes, Bruz, France
| | - Thibault Devienne
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
- Centrale Supelec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Vignais
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- Laboratoire Universitaire de Recherche en Production Automatisée, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Verdel D, Bruneau O, Sahm G, Vignais N, Berret B. The value of time in the invigoration of human movements when interacting with a robotic exoskeleton. SCIENCE ADVANCES 2023; 9:eadh9533. [PMID: 37729420 PMCID: PMC10511201 DOI: 10.1126/sciadv.adh9533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Time and effort are thought to be subjectively balanced during the planning of goal-directed actions, thereby setting the vigor of volitional movements. Theoretical models predicted that the value of time should then amount to high levels of effort. However, the time-effort trade-off has so far only been studied for a narrow range of efforts. To investigate the extent to which humans can invest in a time-saving effort, we used a robotic exoskeleton to substantially vary the energetic cost associated with a certain vigor during reaching movements. In this situation, minimizing the time-effort trade-off should lead to high and low human efforts for upward and downward movements, respectively. Consistently, all participants expended substantial amounts of energy upward and remained essentially inactive by harnessing the work of gravity downward, while saving time in both cases. A common time-effort trade-off may therefore determine the vigor of reaching movements for a wide range of efforts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Guillaume Sahm
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Verdel D, Sahm G, Bruneau O, Berret B, Vignais N. A Trade-Off between Complexity and Interaction Quality for Upper Limb Exoskeleton Interfaces. SENSORS (BASEL, SWITZERLAND) 2023; 23:4122. [PMID: 37112463 PMCID: PMC10142870 DOI: 10.3390/s23084122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Exoskeletons are among the most promising devices dedicated to assisting human movement during reeducation protocols and preventing musculoskeletal disorders at work. However, their potential is currently limited, partially because of a fundamental contradiction impacting their design. Indeed, increasing the interaction quality often requires the inclusion of passive degrees of freedom in the design of human-exoskeleton interfaces, which increases the exoskeleton's inertia and complexity. Thus, its control also becomes more complex, and unwanted interaction efforts can become important. In the present paper, we investigate the influence of two passive rotations in the forearm interface on sagittal plane reaching movements while keeping the arm interface unchanged (i.e., without passive degrees of freedom). Such a proposal represents a possible compromise between conflicting design constraints. The in-depth investigations carried out here in terms of interaction efforts, kinematics, electromyographic signals, and subjective feedback of participants all underscored the benefits of such a design. Therefore, the proposed compromise appears to be suitable for rehabilitation sessions, specific tasks at work, and future investigations into human movement using exoskeletons.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45100 Orléans, France
- LURPA, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Guillaume Sahm
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45100 Orléans, France
| | - Olivier Bruneau
- LURPA, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45100 Orléans, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45100 Orléans, France
| |
Collapse
|