1
|
Ye J, Cui H, Liu E, Pei X, Chai M, Sun L, Wang D, Yang VC, Yu F. Temperature switchable linkers suitable for triggered drug release in cancer thermo-chemotherapy. Int J Pharm 2024; 666:124757. [PMID: 39332459 DOI: 10.1016/j.ijpharm.2024.124757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
In drug delivery systems, a stimuli-responsive linker that attaches a targeting carrier and a cytotoxic payload can be dissociated to release the payload on the target over the action of a stimuli, thereby it would harden the selectivity, specificity and potency of the cytotoxic agent against targeted tissues whilst sparing the drug-induced toxicity on normal cells. Oligonucleotide duplexes can unwind and be separated into single-stranded random coils under a defined temperature, and this property makes the oligonucleotide an appealing thermo-responsive linker. In this work, we studied the melting temperatures of different DNA linkers with various lengths and mismatches inserted in the double helix with either different numbers or positions. We further chose the DNA linkers that can unwind at the hyperthermia temperature and used them in the construction of four different drug delivery systems both in vitro and in vivo. Results showed that the chosen DNA linkers in all of the constructed delivery systems can successfully unwind and release cargos or drugs after application of heat compared to control groups. This research demonstrated the potential applications of DNA duplexes as temperature-sensitive linkers of drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Junxiao Ye
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; School of Pharmaceutical Sciences , Tsinghua University, Beijing 100084, China
| | - Hui Cui
- YUGEN MEDCH (Tianjin) Co., Ltd, Tianjin 300450, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xing Pei
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Meihong Chai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dongmei Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Fei Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Wang ZY, Sun MH, Zhang Q, Li PF, Wang K, Li XM. Advances in Point-of-Care Testing of microRNAs Based on Portable Instruments and Visual Detection. BIOSENSORS 2023; 13:747. [PMID: 37504145 PMCID: PMC10377738 DOI: 10.3390/bios13070747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that are approximately 22 nt in length and regulate gene expression post-transcriptionally. miRNAs play a vital role in both physiological and pathological processes and are regarded as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, and so on. Accurate detection of miRNA expression level in clinical samples is important for miRNA-guided diagnostics. However, the common miRNA detection approaches like RNA sequencing, qRT-PCR, and miRNA microarray are performed in a professional laboratory with complex intermediate steps and are time-consuming and costly, challenging the miRNA-guided diagnostics. Hence, sensitive, highly specific, rapid, and easy-to-use detection of miRNAs is crucial for clinical diagnosis based on miRNAs. With the advantages of being specific, sensitive, efficient, cost-saving, and easy to operate, point-of-care testing (POCT) has been widely used in the detection of miRNAs. For the first time, we mainly focus on summarizing the research progress in POCT of miRNAs based on portable instruments and visual readout methods. As widely available pocket-size portable instruments and visual detection play important roles in POCT, we provide an all-sided discussion of the principles of these methods and their main limitations and challenges, in order to provide a guide for the development of more accurate, specific, and sensitive POCT methods for miRNA detection.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Ming-Hui Sun
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Qun Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
4
|
Liu Y, Ma L, Liu W, Xie L, Wu Q, Wang Y, Zhou Y, Zhang Y, Jiao B, He Y. RPA-CRISPR/Cas12a Combined with Rolling Circle Amplification-Enriched DNAzyme: A Homogeneous Photothermal Sensing Strategy for Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4736-4744. [PMID: 36893726 DOI: 10.1021/acs.jafc.2c07965] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Alternaria is an endemic fungus associated with brown spot disease, which is one of the most serious citrus diseases. In addition, the mycotoxins metabolized by Alternaria threaten human health seriously. Herein, a novel homogeneous and portable qualitative photothermal method based on recombinase polymerase amplification (RPA), CRISPR/Cas12a, and rolling circle amplification (RCA) for the detection of Alternaria is described. Using RCA primers as substrates for CRISPR/Cas12a trans-cleavage, the two systems, RPA-CRISPR/Cas12a and RCA-enriched G-quadruplex/hemin DNAzyme, are intelligently combined. Target DNA at fg/μL levels can be detected with high specificity. Additionally, the practicability of the proposed method is demonstrated by analyzing cultured Alternaria from different fruit and vegetable samples, as well as citrus fruit samples collected in the field. Furthermore, the implementation of this method does not require any sophisticated equipment and complicated washing steps. Therefore, it has great potential to screen Alternaria in poor laboratories.
Collapse
Affiliation(s)
- Yanlin Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Lanrui Ma
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Wenjing Liu
- Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-products Qualitiy & Safety, Fuzhou 350003, P. R. China
| | - Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Qi Wu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yiwen Wang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yan Zhou
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
| |
Collapse
|
5
|
Qiao L, Lang W, Sun C, Huang Y, Wu P, Cai C, Xing B. Near Infrared-II Photothermal and Colorimetric Synergistic Sensing for Intelligent Onsite Dietary Myrosinase Profiling. Anal Chem 2023; 95:3856-3863. [PMID: 36756955 DOI: 10.1021/acs.analchem.2c05474] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Myrosinase (Myr) is a type of critical β-thioglucosidase enzyme activator essential for sustaining many functional foods to perform their health-promoting functions. An accurate and reliable Myr test is meaningful for food quality and dietary nutrition assessments, whereas the currently reported methods do not guarantee specificity and have high reliance on instrumentation, which are not suitable for rapid and onsite Myr screening especially in complex systems from various sources. Herein, we present a unique NIR-II absorption-based photothermal-responsive colorimetric biosensor for anti-interference onsite Myr determination and realization of rapid visualized outputs with the aid of smartphone calculation. Typically, assisted by glucose oxidase (GOx), Myr specifically converts the sinigrin substrate into hydrogen peroxide (H2O2) that can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by AuNPs to form a charge transfer complex (CTC) with NIR-II absorption and photothermal characters. Delightfully, such a proposed method is able to determine Myr within a wide range of 0 to 172.5 mU/mL with a detection limit down to 2.96 mU/mL. Moreover, simple, rapid, and real-time visual Myr identification in actual food-sourced samples could also be readily achieved by smartphone readout processing, with the promising advantages of anti-interference, high accuracy, and low cost as well as labor-saving and intelligence engagement, thus providing great feasibility for precise measurement in complex and dynamic dietary sample analysis. Overall, our proposed method presents a novel technology for onsite dietary Myr enzyme profiling, which is promising to be applied in the food industry for nutritional composition profiles, freshness evaluation, and quality assessment.
Collapse
Affiliation(s)
- Ling Qiao
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wenchao Lang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yining Huang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
6
|
Wang D, Duan J, Liu J, Yi H, Zhang Z, Song H, Li Y, Zhang K. Stimuli-Responsive Self-Degradable DNA Hydrogels: Design, Synthesis, and Applications. Adv Healthc Mater 2023:e2203031. [PMID: 36708144 DOI: 10.1002/adhm.202203031] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Indexed: 01/29/2023]
Abstract
DNA hydrogels play an increasingly important role in biomedicine and bioanalysis applications. Due to their high programmability, multifunctionality and biocompatibility, they are often used as effective carriers for packing drugs, cells, or other bioactive cargoes in vitro and in vivo. However, the stability of the DNA hydrogels prevents their in-demand rapid release of cargoes to achieve a full therapeutic effect in time. For bioanalysis, the generation of signals sometimes needs the DNA hydrogel to be rapidly degraded when sensing target molecules. To meet these requirements, stimulus-responsive DNA hydrogels are designed. By responding to different stimuli, self-degradable DNA hydrogels can switch from gel to solution for quantitative bioanalysis and precision cargo delivery. This review summarizes the recently developed innovative methods for designing stimuli-responsive self-degradable DNA hydrogels and showed their applications in the bioanalysis and biomedicines fields. Challenges, as well as prospects, are also discussed.
Collapse
Affiliation(s)
- Danyu Wang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Duan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingwen Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Yi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Wang Y, Liu Y, Wu Q, Fu R, Liu H, Cui Y, Zhao Q, Chen A, Zhang Y, Jiao B, He Y. Seed-mediated in situ growth of photothermal reagent gold nanostars: Mechanism study and preliminary assay application. Anal Chim Acta 2022; 1231:340424. [DOI: 10.1016/j.aca.2022.340424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
|
8
|
Guo Y, Sun L, Wang Y, Wang Q, Jing D, Liu S. Nanomaterials based on thermosensitive polymer in biomedical field. Front Chem 2022; 10:946183. [PMID: 36212064 PMCID: PMC9532752 DOI: 10.3389/fchem.2022.946183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
The progress of nanotechnology enables us to make use of the special properties of materials on the nanoscale and open up many new fields of biomedical research. Among them, thermosensitive nanomaterials stand out in many biomedical fields because of their “intelligent” behavior in response to temperature changes. However, this article mainly reviews the research progress of thermosensitive nanomaterials, which are popular in biomedical applications in recent years. Here, we simply classify the thermally responsive nanomaterials according to the types of polymers, focusing on the mechanisms of action and their advantages and potential. Finally, we deeply investigate the applications of thermosensitive nanomaterials in drug delivery, tissue engineering, sensing analysis, cell culture, 3D printing, and other fields and probe the current challenges and future development prospects of thermosensitive nanomaterials.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Yingshu Guo,
| | - Li Sun
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yajing Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Qianqian Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|