1
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Jia H, Li H, Rong Y, Jiang K, Liang X, Li G. Knowledge Mapping of Macrophages in Osteoporosis: A Bibliometric Analysis (1999-2023). Orthop Surg 2024; 16:2326-2343. [PMID: 38982570 PMCID: PMC11456733 DOI: 10.1111/os.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Osteoporosis is a common metabolic disorder that significantly impacts quality of life in the elderly population. Macrophages play a crucial role in the development of osteoporosis by regulating bone metabolism through cytokine secretion. However, there is a lack of scholarly literature in the field of bibliometrics on this topic. OBJECTIVE This study provides a detailed analysis of the research focus and knowledge structure of macrophage studies in osteoporosis using bibliometrics. METHODS The scientific literature on macrophage research in the context of osteoporosis, retrieved from the Web of Science Core Collection (WoSCC) database spanning from January 1999 to December 2023, has been incorporated for bibliometric examination. The data is methodically analyzed and visually represented using analytical and visualization tools including VOSviewer, CiteSpace, Scimago Graphica, the Bibliometrix R package, and Pajek. RESULTS AND CONCLUSIONS In the last quarter-century, there has been a consistent rise in the quantity of scholarly publications focusing on the relationship between macrophages and osteoporosis, resulting in a total of 1499 research documents. These studies have originated from 45 different countries, with China, South Korea, and the United States being the most prominent contributors, and the United States having the highest frequency of citations. Noteworthy research institutions involved in this field include Shanghai Jiao Tong University, Wonkwang University, Huazhong University of Science and Technology, and Seoul National University. The Journal of Bone and Mineral Research is widely regarded as the premier and most frequently referenced publication in the field. These publications involve the collaboration of 8744 authors, with Lee Myeung Su contributing the most articles, and Takayanagi being the most co-cited author. Key emerging research focal points are encapsulated in keywords such as "mTOR," "BMSCs," "bone regeneration," and "exosome." The relationships between exosome from macrophage sources and those from BMSCs, along with the regulatory role of the mTOR signaling pathway on macrophages, represent crucial directions for future development in this field. This study represents the inaugural comprehensive bibliometric analysis detailing trends and advancements in macrophage research within the osteoporosis domain. It delineates recent frontiers and hotspots, providing valuable insights for researchers in this particular area of study.
Collapse
Affiliation(s)
- Hai‐Feng Jia
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Han‐Zheng Li
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Yi‐Fa Rong
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Kai Jiang
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xue‐Zhen Liang
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Gang Li
- First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
3
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
5
|
Yang J, Gong X, Li T, Xia Z, He R, Song X, Wang X, Wu J, Chen J, Wang F, Xiong R, Lin Y, Chen G, Yang L, Cai K. Tantalum Particles Promote M2 Macrophage Polarization and Regulate Local Bone Metabolism via Macrophage-Derived Exosomes Influencing the Fates of BMSCs. Adv Healthc Mater 2024; 13:e2303814. [PMID: 38497832 DOI: 10.1002/adhm.202303814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 03/19/2024]
Abstract
In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (Mϕ) polarization, Ta particles regulating calcium signaling pathways and promoting M2 Mϕ polarization. Ta-induced M2 Mϕ enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous Mϕ polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate Mϕ polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 Mϕ, providing insights for potential bone repair applications.
Collapse
Affiliation(s)
- Junjun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui He
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jiajia Chen
- Center of Biomedical Analysis, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fangzheng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ran Xiong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangjing Lin
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
6
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yu X, Ma H, Wang Y, Hao J, Chen L, Gelinsky M, Wu C. Assembled/Disassembled Modular Scaffolds for Multicellular Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308126. [PMID: 38533956 DOI: 10.1002/adma.202308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The behavior of tissue resident cells can be influenced by the spatial arrangement of cellular interactions. Therefore, it is of significance to precisely control the spatial organization of various cells within multicellular constructs. It remains challenging to construct a versatile multicellular scaffold with ordered spatial organization of multiple cell types. Herein, a modular multicellular tissue engineering scaffold with ordered spatial distribution of different cell types is constructed by assembling varying cell-laden modules. Interestingly, the modular scaffolds can be disassembled into individual modules to evaluate the specific contribution of each cell type in the system. Through assembling cell-laden modules, the macrophage-mesenchymal stem cell (MSC), endothelial cell-MSC, and chondrocyte-MSC co-culture models are successfully established. The in vitro results indicate that the intercellular cross-talk can promote the proliferation and differentiation of each cell type in the system. Moreover, MSCs in the modular scaffolds may regulate the behavior of chondrocytes through the nuclear factor of activated T-Cells (NFAT) signaling pathway. Furthermore, the modular scaffolds loaded with co-cultured chondrocyte-MSC exhibit enhanced regeneration ability of osteochondral tissue, compared with other groups. Overall, this work offers a promising strategy to construct a multicellular tissue engineering scaffold for the systematic investigation of intercellular cross-talk and complex tissue engineering.
Collapse
Affiliation(s)
- Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufeng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianxin Hao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine of Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Wang P, Liu B, Song C, Jia J, Wang Y, Pang K, Wang Y, Chen C. Exosome MiR-21-5p Upregulated by HIF-1α Induces Adipose Stem Cell Differentiation to Promote Ectopic Bone Formation. Chem Biodivers 2024; 21:e202301972. [PMID: 38342761 DOI: 10.1002/cbdv.202301972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Heterotopic bone occurs after burns, trauma and major orthopedic surgery, which cannot be completely cured by current treatments. The development of new treatments requires more in-depth research into the mechanism of HO. Available evidence suggests that miR-21-5p plays an important role in bone formation. However, its mechanism in traumatic HO is still unclear. First, we identified exosomes extracted from L6 cells using TEM observation of the structure and western blotting detection of the surface marker CD63. Regulation effect of HIF-1α to miR-21-5p was confirmed by q-PCR assay. Then we co-cultured L6 cells with ASCs and performed alizarin red staining and ALP detection. Overexpression of miR-21-5p upregulated BMP4, p-smad1/5/8, OCN and OPN, which suggests the BMP4-smad signaling pathway may be involved in miR-21-5p regulation of osteogenic differentiation of ASCs. Finally in vivo experiments showed that miR-21-5p exosomes promoted ectopic formation in traumatized mice. This study confirms that HIF-1α could modulate miR-21-5p exosomes to promote post-traumatic ectopic bone formation by inducing ASCs cell differentiation. Our study reveals the mechanisms of miR-21-5p in ectopic ossification formation after trauma.
Collapse
Affiliation(s)
- Peng Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Bo Liu
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Chunhao Song
- Department of Medical Imaging, Weihai Wendeng District People Hospital, Weihai, 264200, China
| | - Jun Jia
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Yuanhao Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Kai Pang
- Department of Operations Management, Wehai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Cong Chen
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| |
Collapse
|
9
|
Yuan R, Li J. Role of macrophages and their exosomes in orthopedic diseases. PeerJ 2024; 12:e17146. [PMID: 38560468 PMCID: PMC10979751 DOI: 10.7717/peerj.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes are vesicles with a lipid bilayer structure that carry various active substances, such as proteins, DNA, non-coding RNA, and nucleic acids; these participate in the immune response, tissue formation, and cell communication. Owing to their low immunogenicity, exosomes play a key role in regulating the skeletal immune environment. Macrophages are important immune cells that swallow various cellular and tissue fragments. M1-like and M2-like macrophages differentiate to play pro-inflammatory, anti-inflammatory, and repair roles following stimulation. In recent years, the increase in the population base and the aging of the population have led to a gradual rise in orthopedic diseases, placing a heavy burden on the social medical system and making it urgent to find effective solutions. Macrophages and their exosomes have been demonstrated to be closely associated with the pathogenesis and prognosis of orthopedic diseases. An in-depth understanding of their mechanisms of action and the interaction between them will be helpful for the future clinical treatment of orthopedic diseases. This review focuses on the mechanisms of action, diagnosis, and treatment of orthopedic diseases involving macrophages and their exosomes, including fracture healing, diabetic bone damage, osteosarcoma, and rheumatoid arthritis. In addition, we discuss the prospects and major challenges faced by macrophages and their exosomes in clinical practice.
Collapse
Affiliation(s)
- Riming Yuan
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianjun Li
- Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Hou C, Zhang Y, Lv Z, Luan Y, Li J, Meng C, Liu K, Luo X, Chen L, Liu F. Macrophage exosomes modified by miR-365-2-5p promoted osteoblast osteogenic differentiation by targeting OLFML1. Regen Biomater 2024; 11:rbae018. [PMID: 38487712 PMCID: PMC10939467 DOI: 10.1093/rb/rbae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
In the bone immune microenvironment, immune cells can regulate osteoblasts through a complex communication network. Macrophages play a central role in mediating immune osteogenesis, exosomes derived from them have osteogenic regulation and can be used as carriers in bone tissue engineering. However, there are problems with exosomal therapy alone, such as poor targeting, and the content of loaded molecules cannot reach the therapeutic concentration. In this study, macrophage-derived exosomes modified with miR-365-2-5p were developed to accelerate bone healing. MC3T3-E1 cells were incubated with the culture supernatants of M0, M1 and M2 macrophages, and it was found that the culture medium of M2 macrophages had the most significant effects in contributing to osteogenesis. High-throughput sequencing identified that miR-365-2-5p was significantly expressed in exosomes derived from M2 macrophages. We incubated MC3T3-E1 with exosomes overexpressing or knocking down miR-365-2-5p to examine the biological function of exosome miR-365-2-5p on MC3T3-E1 differentiation. These findings suggested that miR-365-2-5p secreted by exosomes increased the osteogenesis of MC3T3-E1. Moreover, miR-365-2-5p had a direct influence over osteogenesis for MC3T3-E1. Sequencing analysis combined with dual luciferase detection indicated that miR-365-2-5p binded to the 3'-UTR of OLFML1. In summary, exosomes secreted by M2 macrophages targeted OLFML1 through miR-365-2-5p to facilitate osteogenesis.
Collapse
Affiliation(s)
- Caiyao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yujue Zhang
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Zhaoyong Lv
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Yurun Luan
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Jun Li
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Chunxiu Meng
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Kun Liu
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Xin Luo
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Liyu Chen
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
| | - Fengzhen Liu
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| |
Collapse
|
11
|
Song Y, Hu J, Ma C, Liu H, Li Z, Yang Y. Macrophage-Derived Exosomes as Advanced Therapeutics for Inflammation: Current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:1597-1627. [PMID: 38406601 PMCID: PMC10888065 DOI: 10.2147/ijn.s449388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The development of numerous diseases is significantly influenced by inflammation. Macrophage-derived exosomes (M-Exos) play a role in controlling inflammatory reactions in various conditions, including chronic inflammatory pain, hypertension, and diabetes. However, the specific targets and roles of M-Exos in regulating inflammation in diseases remain largely unknown. This review summarizes current knowledge on M-Exos biogenesis and provides updated information on M-Exos' biological function in inflammation modulation. Furthermore, this review highlights the functionalization and engineering strategies of M-Exos, while providing an overview of cutting-edge approaches to engineering M-Exos and advancements in their application as therapeutics for inflammation modulation. Finally, multiple engineering strategies and mechanisms are presented in this review along with their perspectives and challenges, and the potential contribution that M-Exos may have in diseases through the modulation of inflammation is discussed.
Collapse
Affiliation(s)
- Yanjuan Song
- Graduate School, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Jing Hu
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Chunlian Ma
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Hua Liu
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhanghua Li
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yi Yang
- Fitness Monitoring and Chronic Disease Intervention Research Center, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- College of Sports Medicine, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
12
|
Wang Y, Mao J, Wang Y, Jiang N, Shi X. Multifunctional Exosomes Derived from M2 Macrophages with Enhanced Odontogenesis, Neurogenesis and Angiogenesis for Regenerative Endodontic Therapy: An In Vitro and In Vivo Investigation. Biomedicines 2024; 12:441. [PMID: 38398043 PMCID: PMC10886856 DOI: 10.3390/biomedicines12020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Exosomes derived from M2 macrophages (M2-Exos) exhibit tremendous potential for inducing tissue repair and regeneration. Herein, this study was designed to elucidate the biological roles of M2-Exos in regenerative endodontic therapy (RET) compared with exosomes from M1 macrophages (M1-Exos). METHODS The internalization of M1-Exos and M2-Exos by dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) was detected by uptake assay. The effects of M1-Exos and M2-Exos on DPSC and HUVEC behaviors, including migration, proliferation, odonto/osteogenesis, neurogenesis, and angiogenesis were determined in vitro. Then, Matrigel plugs incorporating M2-Exos were transplanted subcutaneously into nude mice. Immunostaining for vascular endothelial growth factor (VEGF) and CD31 was performed to validate capillary-like networks. RESULTS M1-Exos and M2-Exos were effectively absorbed by DPSCs and HUVECs. Compared with M1-Exos, M2-Exos considerably facilitated the proliferation and migration of DPSCs and HUVECs. Furthermore, M2-Exos robustly promoted ALP activity, mineral nodule deposition, and the odonto/osteogenic marker expression of DPSCs, indicating the powerful odonto/osteogenic potential of M2-Exos. In sharp contrast with M1-Exos, which inhibited the neurogenic capacity of DPSCs, M2-Exos contributed to a significantly augmented expression of neurogenic genes and the stronger immunostaining of Nestin. Consistent with remarkably enhanced angiogenic markers and tubular structure formation in DPSCs and HUVECs in vitro, the employment of M2-Exos gave rise to more abundant vascular networks, dramatically higher VEGF expression, and widely spread CD31+ tubular lumens in vivo, supporting the enormous pro-angiogenic capability of M2-Exos. CONCLUSIONS The multifaceted roles of M2-Exos in ameliorating DPSC and HUVEC functions potentially contribute to complete functional pulp-dentin complex regeneration.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.W.); (J.M.); (Y.W.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
13
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 3-therapeutic + diagnostic potential in dentistry. Periodontol 2000 2024; 94:415-482. [PMID: 38546137 DOI: 10.1111/prd.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of various diseases. Over 5000 publications are currently being published on this topic yearly, many of which in the dental space. This extensive review article is the first scoping review aimed at summarizing all therapeutic uses of exosomes in regenerative dentistry. A total of 944 articles were identified as using exosomes in the dental field for either their regenerative/therapeutic potential or for diagnostic purposes derived from the oral cavity. In total, 113 research articles were selected for their regenerative potential (102 in vitro, 60 in vivo, 50 studies included both). Therapeutic exosomes were most commonly derived from dental pulps, periodontal ligament cells, gingival fibroblasts, stem cells from exfoliated deciduous teeth, and the apical papilla which have all been shown to facilitate the regenerative potential of a number of tissues including bone, cementum, the periodontal ligament, nerves, aid in orthodontic tooth movement, and relieve temporomandibular joint disorders, among others. Results demonstrate that the use of exosomes led to positive outcomes in 100% of studies. In the bone field, exosomes were found to perform equally as well or better than rhBMP2 while significantly reducing inflammation. Periodontitis animal models were treated with simple gingival injections of exosomes and benefits were even observed when the exosomes were administered intravenously. Exosomes are much more stable than growth factors and were shown to be far more resistant against degradation by periodontal pathogens found routinely in a periodontitis environment. Comparative studies in the field of periodontal regeneration found better outcomes for exosomes even when compared to their native parent stem cells. In total 47 diagnostic studies revealed a role for salivary/crevicular fluid exosomes for the diagnosis of birth defects, cardiovascular disease, diabetes, gingival recession detection, gingivitis, irritable bowel syndrome, neurodegenerative disease, oral lichen planus, oral squamous cell carcinoma, oropharyngeal cancer detection, orthodontic root resorption, pancreatic cancer, periodontitis, peri-implantitis, Sjögren syndrome, and various systemic diseases. Hence, we characterize the exosomes as possessing "remarkable" potential, serving as a valuable tool for clinicians with significant advantages.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
- Advanced PRF Education, Venice, Florida, USA
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
14
|
Fang F, Yang J, Wang J, Li T, Wang E, Zhang D, Liu X, Zhou C. The role and applications of extracellular vesicles in osteoporosis. Bone Res 2024; 12:4. [PMID: 38263267 PMCID: PMC10806231 DOI: 10.1038/s41413-023-00313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture, which increases patient susceptibility to fragile fractures. The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles (EVs), which play crucial roles in both pathological and physiological contexts. EVs derived from various sources exert distinct effects on osteoporosis. Specifically, EVs released by osteoblasts, endothelial cells, myocytes, and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins, miRNAs, and cytokines. Conversely, EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation. Furthermore, the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising. Here, we review the current understanding of the impact of EVs on bone homeostasis, including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis. Furthermore, we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs. Finally, we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Zhang R, Li M, Li H, Ran X, Jin F, Tan Q, Chen Z. Immune Cell-Derived Exosomes in Inflammatory Disease and Inflammatory Tumor Microenvironment: A Review. J Inflamm Res 2024; 17:301-312. [PMID: 38250144 PMCID: PMC10800116 DOI: 10.2147/jir.s421649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a common feature of many inflammatory diseases and tumors, and plays a decisive role in their development. Exosomes are extracellular vesicles unleashed by assorted types of cells, and it is widely known that exosomes of different immune cell sources play different functions. Exosome production has recently been reported for immune cells comprising macrophages, T cells, B cells, and dendritic cells (DCs). Immune cell-derived exosomes are involved in a variety of inflammatory responses.Herein, we summarize and review the role of macrophages, T cells, B cells, and dendritic cells (DC) in inflammatory diseases, with a focus on the role of immune cell-derived exosomes in osteoarthritis, rheumatoid arthritis, and the inflammatory tumor microenvironment (TME).These findings are expected to be important for developing new treatments for inflammatory diseases and ameliorating tumor-related inflammation.
Collapse
Affiliation(s)
- Runmin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Muzhe Li
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Huiyun Li
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Xun Ran
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Fengtian Jin
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Qingshan Tan
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| | - Zhiwei Chen
- Department of Orthopaedics, The First Affiliated Hospital of University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
16
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
18
|
Luo X, Meng C, Zhang Y, Du Q, Hou C, Qiang H, Liu K, Lv Z, Li J, Liu F. MicroRNA-21a-5p-modified macrophage exosomes as natural nanocarriers promote bone regeneration by targeting GATA2. Regen Biomater 2023; 10:rbad075. [PMID: 37719929 PMCID: PMC10504470 DOI: 10.1093/rb/rbad075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Bone immune responses based on macrophages are critical in the osteogenesis of bone abnormalities. In general, M2 macrophage facilitate the promotion of osteogenesis, as well, M1 macrophage play an important role in early bone healing, as confirmed by previous studies. However, it is not clear how M1 macrophage are involved in the bone immune response. MiR-21a-5p is a highly expressed microRNA in M1 macrophage in contrast to M2. Therefore, the current work sought to ascertain the influence of M1 macrophage on bone healing via exosomal miR-21a-5p and the probable mechanism. We discovered that injecting M1 macrophage exosomes overexpressing miR-21a-5p into bone defect locations enhanced bone regeneration in vivo. Furthermore, by directly targeting GATA2, miR-21a-5p accelerated MC3T3-E1 osteogenic differentiation. Our findings showed that exosomal miR-21a-5p from M1 macrophage may be transported to osteoblasts and target GATA2 to enhance bone defect healing.
Collapse
Affiliation(s)
- Xin Luo
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Chunxiu Meng
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Yujue Zhang
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Qicui Du
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Caiyao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Huifen Qiang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Kun Liu
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Zhaoyong Lv
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Jun Li
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| | - Fengzhen Liu
- Biomaterials Laboratory, Liaocheng People’s Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, China
| |
Collapse
|
19
|
Zhou JQ, Wan HY, Wang ZX, Jiang N. Stimulating factors for regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells. World J Stem Cells 2023; 15:369-384. [PMID: 37342227 PMCID: PMC10277964 DOI: 10.4252/wjsc.v15.i5.369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 05/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs), distributed in many tissues in the human body, are multipotent cells capable of differentiating in specific directions. It is usually considered that the differentiation process of MSCs depends on specialized external stimulating factors, including cell signaling pathways, cytokines, and other physical stimuli. Recent findings have revealed other underrated roles in the differentiation process of MSCs, such as material morphology and exosomes. Although relevant achievements have substantially advanced the applicability of MSCs, some of these regulatory mechanisms still need to be better understood. Moreover, limitations such as long-term survival in vivo hinder the clinical application of MSCs therapy. This review article summarizes current knowledge regarding the differentiation patterns of MSCs under specific stimulating factors.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hao-Yang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zi-Xuan Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
20
|
Deng H, Wang J, An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023; 14:1131001. [PMID: 37007032 PMCID: PMC10063825 DOI: 10.3389/fphar.2023.1131001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) containing various ingredients such as DNA, RNA, lipids and proteins, which play a significant role in intercellular communication. Numerous studies have demonstrated the important role of exosomes in bone regeneration through promoting the expression of osteogenic-related genes and proteins in mesenchymal stem cells. However, the low targeting ability and short circulating half-life of exosomes limited their clinical application. In order to solve those problems, different delivery systems and biological scaffolds have been developed. Hydrogel is a kind of absorbable biological scaffold composed of three-dimensional hydrophilic polymers. It not only has excellent biocompatibility and superior mechanical strength but can also provide a suitable nutrient environment for the growth of the endogenous cells. Thus, the combination between exosomes and hydrogels can improve the stability and maintain the biological activity of exosomes while achieving the sustained release of exosomes in the bone defect sites. As an important component of the extracellular matrix (ECM), hyaluronic acid (HA) plays a critical role in various physiological and pathological processes such as cell differentiation, proliferation, migration, inflammation, angiogenesis, tissue regeneration, wound healing and cancer. In recent years, hyaluronic acid-based hydrogels have been used as an exosome delivery system for bone regeneration and have displayed positive effects. This review mainly summarized the potential mechanism of HA and exosomes in promoting bone regeneration and the application prospects and challenges of hyaluronic acid-based hydrogels as exosome delivery devices in bone regeneration.
Collapse
Affiliation(s)
| | | | - Ran An
- *Correspondence: Jiecong Wang, ; Ran An,
| |
Collapse
|
21
|
Liu S, Liu W, Yang Q, Yang S, Yang Y, Fan L, Zhang Y, Qi B, Shi Z, Wei X, Zhu L, Li T. Non-Coding-RNA-Activated Core/Chitosan Shell Nanounits Coated with Polyetheretherketone for Promoting Bone Regeneration and Osseointegration via Osteoimmunology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12653-12668. [PMID: 36868875 DOI: 10.1021/acsami.2c19186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bone implant outcome and bone regeneration properties can be improved by the immunomodulation of exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs), which contain cytokines, signaling lipids, and regulatory miRNAs. Analysis of miRNAs in BMSCs-derived exosomes showed that miR-21a-5p exhibited the highest expression and was associated with the NF-κB pathway. Hence, we developed an implant with miR-21a-5p functionality to promote bone incorporation by immunoregulation. Mediated by the potent interaction between tannic acid (TA) and biomacromolecules, the tannic acid modified mesoporous bioactive glass nanoparticles coated with miR-21a-5p (miR-21a-5p@T-MBGNs) were reversibly attached to TA-modified polyetheretherketone (T-PEEK). Cocultured cells could phagocytose miR-21a-5p@T-MBGNs slowly released from miR-21a-5p@T-MBGNs loaded T-PEEK (miMT-PEEK). Moreover, miMT-PEEK boosted macrophage M2 polarization via the NF-κB pathway to increase BMSCs osteogenic differentiation. In vivo testing of miMT-PEEK in the rat air-pouch model and rat femoral drilling model indicated effective macrophage M2 polarization, new bone formation, and excellent osseointegration. Overall, the osteoimmunomodulation of the miR-21a-5p@T-MBGNs-functionalized implant promoted osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yili Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Tao Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
22
|
Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release 2023; 356:463-480. [PMID: 36907562 DOI: 10.1016/j.jconrel.2023.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Complexity and difficulties in wound management are pressing concerns that affect patients' quality of life and may result in tissue infection, necrosis, and loss of local and systemic functions. Hence, novel approaches to accelerate wound healing are being actively explored over the last decade. Exosomes as important mediators of intercellular communications are promising natural nanocarriers due to their biocompatibility, low immunogenicity, drug loading and targeting capacities, and innate stability. More importantly, exosomes are developed as a versatile pharmaceutical engineering platform for wound repair. This review provides an overview of the biological and physiological functions of exosomes derived from a variety of biological origins during wound healing phases, strategies for exosomal engineering, and therapeutic applications in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
23
|
Pu P, Wu S, Zhang K, Xu H, Guan J, Jin Z, Sun W, Zhang H, Yan B. Mechanical force induces macrophage-derived exosomal UCHL3 promoting bone marrow mesenchymal stem cell osteogenesis by targeting SMAD1. J Nanobiotechnology 2023; 21:88. [PMID: 36915132 PMCID: PMC10012474 DOI: 10.1186/s12951-023-01836-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM), a process of alveolar bone remodelling, is induced by mechanical force and regulated by local inflammation. Bone marrow-derived mesenchymal stem cells (BMSCs) play a fundamental role in osteogenesis during OTM. Macrophages are mechanosensitive cells that can regulate local inflammatory microenvironment and promote BMSCs osteogenesis by secreting diverse mediators. However, whether and how mechanical force regulates osteogenesis during OTM via macrophage-derived exosomes remains elusive. RESULTS Mechanical stimulation (MS) promoted bone marrow-derived macrophage (BMDM)-mediated BMSCs osteogenesis. Importantly, when exosomes from mechanically stimulated BMDMs (MS-BMDM-EXOs) were blocked, the pro-osteogenic effect was suppressed. Additionally, compared with exosomes derived from BMDMs (BMDM-EXOs), MS-BMDM-EXOs exhibited a stronger ability to enhance BMSCs osteogenesis. At in vivo, mechanical force-induced alveolar bone formation was impaired during OTM when exosomes were blocked, and MS-BMDM-EXOs were more effective in promoting alveolar bone formation than BMDM-EXOs. Further proteomic analysis revealed that ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) was enriched in MS-BMDM-EXOs compared with BMDM-EXOs. We went on to show that BMSCs osteogenesis and mechanical force-induced bone formation were impaired when UCHL3 was inhibited. Furthermore, mothers against decapentaplegic homologue 1 (SMAD1) was identified as the target protein of UCHL3. At the mechanistic level, we showed that SMAD1 interacted with UCHL3 in BMSCs and was downregulated when UCHL3 was suppressed. Consistently, overexpression of SMAD1 rescued the adverse effect of inhibiting UCHL3 on BMSCs osteogenesis. CONCLUSIONS This study suggests that mechanical force-induced macrophage-derived exosomal UCHL3 promotes BMSCs osteogenesis by targeting SMAD1, thereby promoting alveolar bone formation during OTM.
Collapse
Affiliation(s)
- Panjun Pu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Jiani Guan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210000, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210000, China.
| |
Collapse
|
24
|
Cheung KCP, Jiao M, Xingxuan C, Wei J. Extracellular vesicles derived from host and gut microbiota as promising nanocarriers for targeted therapy in osteoporosis and osteoarthritis. Front Pharmacol 2023; 13:1051134. [PMID: 36686680 PMCID: PMC9859449 DOI: 10.3389/fphar.2022.1051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP), a systemic bone disease that causes structural bone loss and bone mass loss, is often associated with fragility fractures. Extracellular vesicles (EVs) generated by mammalian and gut bacteria have recently been identified as important mediators in the intercellular signaling pathway that may play a crucial role in microbiota-host communication. EVs are tiny membrane-bound vesicles, which range in size from 20 to 400 nm. They carry a variety of biologically active substances across intra- and intercellular space. These EVs have developed as a promising research area for the treatment of OP because of their nanosized architecture, enhanced biocompatibility, reduced toxicity, drug loading capacity, ease of customization, and industrialization. This review describes the latest development of EVs derived from mammals and bacteria, including their internalization, isolation, biogenesis, classifications, topologies, and compositions. Additionally, breakthroughs in chemical sciences and the distinctive biological features of bacterial extracellular vesicles (BEVs) allow for the customization of modified BEVs for the therapy of OP. In conclusion, we give a thorough and in-depth summary of the main difficulties and potential future of EVs in the treatment of OP, as well as highlight innovative uses and choices for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Kenneth Chat Pan Cheung
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ma Jiao
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chen Xingxuan
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jia Wei
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
25
|
Wang D, Liu Y, Diao S, Shan L, Zhou J. Long Non-Coding RNAs Within Macrophage-Derived Exosomes Promote BMSC Osteogenesis in a Bone Fracture Rat Model. Int J Nanomedicine 2023; 18:1063-1083. [PMID: 36879890 PMCID: PMC9985426 DOI: 10.2147/ijn.s398446] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Purpose To investigate the effect of macrophage exosomal long non-coding (lnc)RNAs on bone mesenchymal stem cell (BMSC) osteogenesis and the associated mechanism. Methods Rat BMSCs and spleen macrophages were co-cultured with serum derived from the fracture microenvironment of rat tibia. BMSC osteogenesis was evaluated using Alizarin red staining and the expression of BMP-2, RUNX2, OPN, and OC mRNA. BMSC osteogenesis was evaluated after co-culture with macrophages stimulated using hypoxic conditions or colony-stimulating factor (CSF). The uptake of macrophage-derived exosomes by BMSCs was evaluated using the exosome uptake assay. High-throughput sequencing and bioinformatics analyses were performed to identify key lncRNAs in the macrophage exosomes. The effect of lncRNA expression levels on BMSC osteogenesis was also assessed using a lncRNA overexpression plasmid and siRNA technology. M1 and M2 macrophages were distinguished using flow cytometry and the key exosomal lncRNA was detected by in situ hybridization. Results In the fracture microenvironment, macrophages (stimulated using either hypoxia or CSF) significantly increased the osteogenic ability of BMSCs. We showed that BMSCs assimilated macrophage-derived vesicles and that the inhibition of exosomal secretion significantly attenuated the macrophage-mediated induction of BMSC osteogenesis. The hypoxia condition led to the up-regulation of 310 lncRNAs and the down-regulation of 575 lncRNAs in macrophage exosomes, while CSF stimulation caused the up-regulation of 557 lncRNAs and the down-regulation of 407 lncRNAs. In total, 108 lncRNAs were co-up-regulated and 326 lncRNAs were co-down-regulated under both conditions. We eventually identified LOC103691165 as a key lncRNA that promoted BMSC osteogenesis and was expressed at similar levels in both M1 and M2 macrophages. Conclusion In the fracture microenvironment, M1 and M2 macrophages promoted BMSC osteogenesis by secreting exosomes containing LOC103691165.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Shuo Diao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Lei Shan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| |
Collapse
|
26
|
Liu N, Dong J, Li L, Liu F. Osteoimmune Interactions and Therapeutic Potential of Macrophage-Derived Small Extracellular Vesicles in Bone-Related Diseases. Int J Nanomedicine 2023; 18:2163-2180. [PMID: 37131544 PMCID: PMC10149074 DOI: 10.2147/ijn.s403192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Due to the aging of the global population, the burden of bone-related diseases has increased sharply. Macrophage, as indispensable components of both innate immune responses and adaptive immunity, plays a considerable role in maintaining bone homeostasis and promoting bone establishment. Small extracellular vesicles (sEVs) have attracted increasing attention because they participate in cell cross-talk in pathological environments and can serve as drug delivery systems. In recent years, an increasing number of studies have expanded our knowledge about the effects of macrophage-derived sEVs (M-sEVs) in bone diseases via different forms of polarization and their biological functions. In this review, we comprehensively describe on the application and mechanisms of M-sEVs in various bone diseases and drug delivery, which may provide new perspectives for treating and diagnosing human bone disorders, especially osteoporosis, arthritis, osteolysis, and bone defects.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Fanxiao Liu, Department of Orthopedics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China, Tel/Fax +86-0531-68773195, Email
| |
Collapse
|
27
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
28
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Li J, Luo X, Lv ZY, Qiang HF, Hou CY, Liu K, Meng CX, Zhang YJ, Liu FZ, Zhang B. Microporous structures on mineralized collagen mediate osteogenesis by modulating the osteo-immune response of macrophages. Front Bioeng Biotechnol 2022; 10:917655. [PMID: 36105601 PMCID: PMC9464819 DOI: 10.3389/fbioe.2022.917655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
It is a new hot pot in tissue engineering and regenerative medicine to study the effects of physicochemical properties of implanted biomaterials on regulating macrophage polarization to promote bone regeneration. In this study, we designed and fabricated mineralized collagen (MC) with different microporous structures via in vitro biomimetic mineralization method. The microporous structures, mechanical properties, shore hardness and water contact angle measurements were tested. Live/dead cell staining, CCK-8 assay, phalloidine staining, staining of focal adhesions were used to detect cell behavior. ELISA, qRT-PCR, ALP, and alizarin red staining (ARS) were performed to appraise osteogenic differentiation and investigated macrophage response and their subsequent effects on the osteogenic differentiation. The results showed that RAW264.7 and MC3T3-E1 cells were able to survive on the MC. MC with the microporous structure of approximately 84 μm and 70%–80% porosity could promote M2 macrophage polarization and increase the expression level of TGF-β and VEGF. Moreover, the gene expression of the osteogenic markers ALP, COL-1, and OCN increased. Therefore, MC with different microporous structures mediated osteoimmunomodulation in bone regeneration. These data will provide a new idea of biomaterials inducing bone repair and direct the optimal design of novel immune biomaterials, development, and rational usage.
Collapse
Affiliation(s)
- Jun Li
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Xin Luo
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Zhao-Yong Lv
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Hui-Fen Qiang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| | - Cai-Yao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
| | - Kun Liu
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Chun-Xiu Meng
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Yu-Jue Zhang
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
- *Correspondence: Yu-Jue Zhang, ; Feng-Zhen Liu, ; Bin Zhang,
| | - Feng-Zhen Liu
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng, China
- *Correspondence: Yu-Jue Zhang, ; Feng-Zhen Liu, ; Bin Zhang,
| | - Bin Zhang
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Liaocheng People’s Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, China
- *Correspondence: Yu-Jue Zhang, ; Feng-Zhen Liu, ; Bin Zhang,
| |
Collapse
|
30
|
Ye J, Liu X. Macrophage-Derived Small Extracellular Vesicles in Multiple Diseases: Biogenesis, Function, and Therapeutic Applications. Front Cell Dev Biol 2022; 10:913110. [PMID: 35832790 PMCID: PMC9271994 DOI: 10.3389/fcell.2022.913110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages (Mφs), as immune cells, play a pivotal role against pathogens and many diseases, such as cancer, inflammation, cardiovascular diseases, orthopedic diseases, and metabolic disorders. In recent years, an increasing number of studies have shown that small extracellular vesicles (sEVs) derived from Mφs (M-sEVs) play important roles in these diseases, suggesting that Mφs carry out their physiological functions through sEVs. This paper reviews the mechanisms underlying M-sEVs production via different forms of polarization and their biological functions in multiple diseases. In addition, the prospects of M-sEVs in disease diagnosis and treatment are described.
Collapse
Affiliation(s)
- Jingyao Ye
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuehong Liu
- The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|