1
|
Bertrand DT, Fu R, Kavaseri K, Villemure I, Rauch F, Hamdy R, Yang H, Willie BM. The accordion technique did not improve bone healing in a mouse model of distraction osteogenesis. Sci Rep 2024; 14:24466. [PMID: 39424834 PMCID: PMC11489654 DOI: 10.1038/s41598-024-71335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024] Open
Abstract
Distraction osteogenesis (DO) is a valuable surgical method for limb lengthening and bone defect correction, but its lengthy consolidation phase presents challenges. The accordion technique (AT), involving compression and distraction of bone segments, has shown potential for enhancing healing. This study aimed to investigate the effectiveness of the AT conducted at three different time points (distraction phase, early consolidation phase, or late consolidation phase) compared to conventional DO in a mouse osteotomy model. Healing was evaluated using in vivo microCT, histology, and computational modeling. Results showed that bridging frequency, BV, and callus tissue composition were similar between conventional DO and late consolidation AT. In contrast, distraction phase AT led to delayed healing at day 15 with a 72% reduction in BV compared to DO, but no significant differences by the endpoint. Early consolidation AT showed significantly impaired healing compared to DO, with only 29% of mice achieving bony bridging, and significantly reduced bone marrow area of the endpoint callus. In silico modeling was generally predictive of in vivo findings and suggested that application of the AT during early consolidation results in destruction of newly-formed vascular tissue. Overall, no benefit was observed for the AT compared to conventional DO with the parameters employed in this study.
Collapse
Affiliation(s)
- David T Bertrand
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Ruisen Fu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Frank Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Reggie Hamdy
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
刘 凯, 史 凌, 王 苏, 艾 尼, 伊 木, 艾 合. [Effect of accordion technique and deferoxamine on promoting bone regeneration in distraction osteogenesis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1001-1009. [PMID: 39175324 PMCID: PMC11335587 DOI: 10.7507/1002-1892.202404073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Objective To compare the effects of hypoxia-inducible drugs using deferoxamine (DFO) and accordion technique (AT) on activating the hypoxia-inducible factor 1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to promote bone regeneration and remodelling during consolidation phase of distraction osteogenesis (DO). Methods Forty-five specific-pathogen-free adult male Sprague-Dawley (SD) rats were randomly divided into the control group, DFO group, and AT group, with 15 rats in each group. All rats underwent osteotomy to establish a right femur DO model. Then, continuous distraction was started for 10 days after 5 days of latency in each group. During the consolidation phase after distraction, no intervention was performed in the control group; DFO was locally perfused into the distraction area in the DFO group starting at the 3rd week of consolidation phase; cyclic stress stimulation was given in the AT group starting at the 3rd week of consolidation phase. The general condition of rats in each group was observed. X-ray films were conducted at the end of the distraction phase and at the 2nd, 4th, and 6th weeks of the consolidation phase to observe the calcification in the distraction area. At the 4th and 6th weeks of the consolidation phase, peripheral blood was taken for ELISA detection (HIF-1α, VEGF, CD31, and Osterix), femoral specimens were harvested for gross observation, histological staining (HE staining), and immunohistochemical staining [HIF-1α, VEGF, osteopontin (OPN), osteocalcin (OCN)]. At the 6th week of the consolidation phase, Micro-CT was used to observe the new bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and trabecular thickness (Tb.Th) in the distraction area, and biomechanical test (ultimate load, elastic modulus, energy to failure, and stiffness) to detect bone regeneration in the distraction area. Results The rats in all groups survived until the termination of the experiment. ELISA showed that the contents of HIF-1α, VEGF, CD31, and Osterix in the serum of the AT group were significantly higher than those of the DFO group and control group at the 4th and 6th weeks of the consolidation phase ( P<0.05). General observation, X-ray films, Micro-CT, and biomechanical test showed that bone formation in the femoral distraction area was significantly better in the DFO group and AT group than in the control group, and complete recanalization of the medullary cavity was achieved in the AT group, and BMD, BV/TV, Tb.Sp, Tb.N, and Tb.Th, as well as ultimate load, elastic modulus, energy to failure, and stiffness in the distraction area, were better in the AT group than in the DFO group and control group, and the differences were significant ( P<0.05). HE staining showed that trabecular bone formation and maturation in the distraction area were better in the AT group than in the DFO group and control group. Immunohistochemical staining showed that at the 4th week of consolidation phase, the expression levels of HIF-1α, VEGF, OCN, and OPN in the distraction area of the AT group were significantly higher than those of the DFO group and control group ( P<0.05); however, at 6th week of consolidation phase, the above indicators were lower in the AT group than in the DFO group and control group, but there was no significant difference between groups ( P>0.05). Conclusion Both continuous local perfusion of DFO in the distraction area and AT during the consolidation phase can activate the HIF-1α/VEGF signaling pathway. However, AT is more effective than local perfusion of DFO in promoting the process of angiogenesis, osteogenesis, and bone remodelling.
Collapse
Affiliation(s)
- 凯 刘
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 凌云 史
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 苏龙 王
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 尼孜尔·亚力坤 艾
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 木让·哈米提 伊
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| | - 合买提江·玉素甫 艾
- 新疆医科大学第一附属医院骨科中心显微修复外科(乌鲁木齐 830054)Department of Trauma and Microreconstructive Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
- 新疆医科大学第一附属医院骨科(乌鲁木齐 830054)Department of Orthopaedic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang, 830054, P. R. China
| |
Collapse
|
3
|
Bafor A, Iobst C, Samchukov M, Cherkashin A, Singh S, Aguilar L, Glatt V. Reverse Dynamization Accelerates Regenerate Bone Formation and Remodeling in a Goat Distraction Osteogenesis Model. J Bone Joint Surg Am 2023; 105:1937-1946. [PMID: 37639500 DOI: 10.2106/jbjs.22.01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
UPDATE This article was updated on December 20, 2023, because of previous errors, which were discovered after the preliminary version of the article was posted online. Figure 4 has been replaced with a figure that presents different p values. Also, on page 1943, the text that had read: "Quantitative microCT confirmed that the total volume of the regenerate in the RD group was much smaller compared with the SF (p = 0.06) and DF (p = 0.007) groups, although it was significantly smaller only compared with the DF group (Fig. 4-A). The total volume of the intact bone (contralateral tibia) was significantly smaller in the RD group compared with the other groups, but the RD group had values closest to those for the intact tibia. Similarly, the RD group had less bone volume compared with the SF and DF groups, and this value was significantly different from the DF group (p = 0.034; Fig. 4-B). Of the 3 groups, the RD group had vBMD that was the closest to that of intact bone. It also had significantly higher vBMD compared with the SF and DF groups (p < 0.0001 for both; Fig. 4-C).The results of torsional testing (Fig. 4-D) confirmed that the regenerate bone formed under conditions of RD was significantly stronger than that formed under SF or DF (p < 0.001 versus SF group, and p = 0.0493 versus DF group)."now reads: "Quantitative microCT confirmed that the total volume of the regenerate in the RD group was significantly smaller compared with the SF and DF groups (p < 0.01 for both groups; Fig. 4-A). The total volume of the intact bone (contralateral tibia) was significantly smaller compared with the SF and DF groups (p < 0.0001 for both). The RD group had values closest to those for the intact tibia, and this difference was not significant (Fig. 4-A). Similarly, the RD group had less bone volume compared with the SF and DF groups, and this value was significantly different from the DF group (p < 0.01; Fig. 4-B). Of the 3 groups, the RD group had vBMD that was the closest to that of intact bone, but the intact bone was significantly different compared with all of the other groups (p < 0.0001 for all groups). The RD group had significantly higher vBMD compared with the SF and DF groups (p = 0.042 and p = 0.046, respectively; Fig. 4-C).The results of torsional testing (Fig. 4-D) confirmed that the regenerate bone formed under conditions of RD was significantly stronger than that formed under SF or DF (p < 0.0001 versus SF group, and p = 0.0493 versus DF group). The intact group was significantly different compared with the SF group (p < 0.0001)."
Collapse
Affiliation(s)
- Anirejuoritse Bafor
- Center for Limb Lengthening and Reconstruction, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher Iobst
- Center for Limb Lengthening and Reconstruction, Nationwide Children's Hospital, Columbus, Ohio
- College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mikhail Samchukov
- The Center for Excellence in Limb Lengthening & Reconstruction, Texas Scottish Rite Hospital for Children, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexander Cherkashin
- The Center for Excellence in Limb Lengthening & Reconstruction, Texas Scottish Rite Hospital for Children, Dallas, Texas
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Satbir Singh
- Center for Limb Lengthening and Reconstruction, Nationwide Children's Hospital, Columbus, Ohio
| | - Leonardo Aguilar
- Department of Orthopedic Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Vaida Glatt
- Department of Orthopedic Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
4
|
Liu K, Wang S, Yalikun A, Ren P, Yusufu A. The accordion technique enhances bone regeneration via angiogenesis factor in a rat distraction osteogenesis model. Front Physiol 2023; 14:1259567. [PMID: 37745241 PMCID: PMC10514895 DOI: 10.3389/fphys.2023.1259567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Objective: The purpose of this study was to observe the effect of the accordion technique (AT) during the distraction phase on chondrogenesis and bone regeneration in a rat femoral distraction osteogenesis (DO) model, and investigate its potential mechanism for reducing the total treatment time of DO. Methods: Fifty-four male Sprague-Dawley (SD) rats that were specific-pathogen-free (SPF) were subjected to DO surgery on the right femur. The distraction rate was 0.5 mm/day for 10 days, following a latency period of 5 days. Rats were randomly divided into Control (no AT, n = 18), Group LA (low amplitude with AT, n = 18), and Group HA (high amplitude with AT, n = 18) according to different AT protocols in the distraction phase. Rats were respectively euthanized by anesthesia overdose at 2, 4 and 6 weeks of the consolidation phase, and the femurs were harvested. Digital radiography, micro-computed tomography (micro-CT), biomechanical tests, and histomorphological analysis were used to assess the quality of regenerated bone in the distraction area. Results: Digital radiographic, micro-CT, biomechanical tests, and histological analysis revealed an increase in early-stage callus formation (p < 0.05) and improved blood supply to the callus tissue in Group LA, as compared to both the Control and Group HA. The enhanced differentiation of fibrous and cartilaginous tissue into bone tissue was also observed in Group LA, leading to improved strength and stiffness (p < 0.05) of the regenerated bone at 6 weeks of the consolidation phase. The angiogenic (hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), p < 0.05) and osteogenic (runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin (OPN), p < 0.05) biomarkers were higher expressed in Group LA at 2 and 4 weeks of consolidation phase, whereas decreased at 6 weeks of consolidation phase. Conclusion: The application of AT with low amplitude during the distraction phase can enhance chondrogenesis and bone regeneration by activating the angiogenesis factor pathway and upregulating the expression of osteogenic-related biomarkers such as HIF-1α, VEGF, RUNX2, OCN, and OPN.
Collapse
Affiliation(s)
| | | | | | - Peng Ren
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Aihemaitijiang Yusufu
- Department of Trauma and Microreconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Wu S, Zhang L, Zhang R, Yang K, Wei Q, Jia Q, Guo J, Ma C. Rat bone marrow mesenchymal stem cells induced by rrPDGF-BB promotes bone regeneration during distraction osteogenesis. Front Bioeng Biotechnol 2023; 11:1110703. [PMID: 36959901 PMCID: PMC10027703 DOI: 10.3389/fbioe.2023.1110703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: In the clinical treatment of large bone defects, distraction osteogenesis can be used. However, some patients may suffer from poor bone regeneration, or even delayed healing or non-union. Problems with the aggregation and proliferation of primary osteoblasts, or problems with the differentiation of primary osteoblasts will lead to poor bone regeneration. Therefore, supplementing exogenous primary osteoblasts and growth factors when using distraction osteogenesis may be a treatment plan with great potential. Methods: Bone marrow mesenchymal stem cells (BMSCs) were extracted from rats and cultured. Subsequently, Recombinant Rat Platelet-derived Growth Factor BB (rrPDGF-BB) was used to induce bone marrow mesenchymal stem cells. At the same time, male adult rats were selected to make the right femoral distraction osteogenesis model. During the mineralization period, phosphate buffer salt solution (control group), non-induction bone marrow mesenchymal stem cells (group 1) and recombinant rat platelet-derived growth factor BB intervened bone marrow mesenchymal stem cells (group 2) were injected into the distraction areas of each group. Then, the experimental results were evaluated with imaging and histology. Statistical analysis of the data showed that the difference was statistically significant if p < 0.05. Results: After intervention with recombinant rat platelet-derived growth factor BB on bone marrow mesenchymal stem cells, the cell morphology changed into a thin strip. After the cells were injected in the mineralization period, the samples showed that the callus in group 2 had greater hardness and the color close to the normal bone tissue; X-ray examination showed that there were more new callus in the distraction space of group 2; Micro-CT examination showed that there were more new bone tissues in group 2; Micro-CT data at week eight showed that the tissue volume, bone volume, percent bone volume, bone trabecular thickness, bone trabecular number and bone mineral density in group 2 were the largest, and the bone trabecular separation in group 2 was the smallest. There was a statistical difference between the groups (p < 0.05); HE staining confirmed that group 2 formed more blood vessels and chondrocytes earlier than the control group. At 8 weeks, the bone marrow cavity of group 2 was obvious, and some of them had been fused. Conclusion: The study confirmed that injecting bone marrow mesenchymal stem cellsBB into the distraction space of rats can promote the formation of new bone in the distraction area and promote the healing of distraction osteogenesis.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lijie Zhang
- Department of Neurology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ruidan Zhang
- Guangdong New Omega Medical Centre, Guangzhou, China
| | - Kang Yang
- Hand and foot microsurgery of the third people’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qin Wei
- Animal Experiment Center of Xinjiang Medical University, Urumqi, China
| | - Qiyu Jia
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Guo
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chuang Ma,
| |
Collapse
|
6
|
Fu R, Feng Y, Liu Y, Gao X, Bertrand DT, Du T, Liu Y, Willie BM, Yang H. Effect of the accordion technique on bone regeneration during distraction osteogenesis: A computational study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107232. [PMID: 36371976 DOI: 10.1016/j.cmpb.2022.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Distraction osteogenesis (DO), a bone lengthening technique, is widely employed to treat congenital and acquired limb length discrepancies and large segmental bone defects. However, a major issue of DO is the prolonged consolidation phase (10-36 months) during which patients must wear a cumbersome external fixator. Attempts have been made to accelerate the healing process of DO by an alternating distraction and compression mode (so-called "accordion" technique or AT). However, it remains unclear how varied AT parameters affect DO outcomes and what the most effective AT mode is. METHODS Based on an experimentally-verified mechanobiological model, we performed a parametric analysis via in silico simulation of the bone regeneration process of DO under different AT modes, including combinations of varied application times (AT began at week 1-8 of the consolidation phase), durations (AT was used continuously for 1 week, 2 weeks or 4 weeks) and rates (distraction or compression at 0.25, 0.5, 0.75, and 1 mm/12 h). The control group had no AT applied during the consolidation phase. RESULTS Compared with the control group (no AT), AT applied at an early consolidation stage (e.g. week 1 of the consolidation phase) significantly enhanced bone formation and reduced the overall healing time. However, the effect of AT on bone healing was dependent on its duration and rate. Specifically, a moderate rate of AT (e.g. 0.5 mm/12 h) lasting for two weeks promoted blood perfusion recovery and bone regeneration, ultimately shortening the healing time. Conversely, over-high rates (e.g. 1 mm/12 h) and longer durations (e.g. 4 weeks) of AT adversely affected bone regeneration and blood perfusion recovery, thereby delaying bone bridging. CONCLUSIONS These results suggest that the therapeutic effects of AT on DO are highly dependent of the AT parameters of choice. Under appropriate durations and rates, the AT applied at an early consolidation phase is beneficial for blood recovery and bone regeneration. These results may provide a basis for selecting effective AT modes to accelerate consolidation and reduce the overall treatment period of DO.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yili Feng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - David T Bertrand
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Bettina M Willie
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|