1
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
2
|
Goodarzi MM, Jalalirad R. Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review. Biotechnol Bioeng 2024. [PMID: 39290077 DOI: 10.1002/bit.28846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed-mode chromatography (MMC) resins for launching selective, orthogonal, non-affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step-by-step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product-related impurities (e.g., aggregates, charge variants, fragments), host-related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
3
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
4
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Zhou Z, Zhu F, Ma S, Tan C, Yang H, Zhang P, Xu Y, Qin R, Luo Y, Chen J, Pan P. Design of Cryptococcus neoformans multi-epitope vaccine based on immunoinformatics method. Med Mycol 2024; 62:myae080. [PMID: 39122658 DOI: 10.1093/mmy/myae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Cryptococcus neoformans is a widely distributed opportunistic pathogenic fungus. While C. neoformans commonly infects immunocompromised individuals, it can also affect those who are immunocompetent. Transmission of C. neoformans primarily occurs through the respiratory tract, leading to the development of meningitis. The mortality rate of Cryptococcal meningitis is high, and treatment options are limited. Cryptococcus neoformans infections pose a significant public health threat and currently lack targeted and effective response strategies. This study aimed to screen T lymphocyte (cytotoxic T lymphocyte and helper T lymphocyte) and B lymphocyte epitopes derived from four C. neoformans antigens and develop two multi-epitope vaccines by combining them with various adjuvants. Molecular docking results demonstrated that the vaccines bind stably to Toll-like receptor 4 ( and induce innate immunity. The credibility of the molecular docking results was validated through subsequent molecular dynamics simulations. Furthermore, the results of immune simulation analyses underscored the multi-epitope vaccine's capability to effectively induce robust humoral and cellular immune responses within the host organism. These two vaccines have demonstrated theoretical efficacy against C. neoformans infection as indicated by computer analysis. Nevertheless, additional experimental validation is essential to substantiate the protective efficacy of the vaccines.
Collapse
Affiliation(s)
- Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan 410025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Mišković MZ, Wojtyś M, Winiewska-Szajewska M, Wielgus-Kutrowska B, Matković M, Domazet Jurašin D, Štefanić Z, Bzowska A, Leščić Ašler I. Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori. Int J Mol Sci 2024; 25:7613. [PMID: 39062851 PMCID: PMC11276676 DOI: 10.3390/ijms25147613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly simplified by the introduction of affinity tags. Helicobacter pylori adenylosuccinate synthetase (AdSS) is present in solution in a dynamic equilibrium of monomers and biologically active homodimers. The addition of the His6-tag on the C-terminus (C-His-AdSS) was proven to have a negligible effect on the characteristics of this enzyme. This paper shows that the same enzyme with the His6-tag fused on its N-terminus (N-His-AdSS) has a high tendency to precipitate. Circular dichroism and X-ray diffraction studies do not detect any structural change that could explain this propensity. However, the dynamic light scattering, differential scanning fluorimetry, and analytical ultracentrifugation measurements indicate that the monomer of this construct is prone to aggregation, which shifts the equilibrium towards the insoluble precipitant. In agreement, enzyme kinetics measurements showed reduced enzyme activity, but preserved affinity for the substrates, in comparison with the wild-type and C-His-AdSS. The presented results reinforce the notion that testing the influence of the tag on protein properties should not be overlooked.
Collapse
Affiliation(s)
- Marija Zora Mišković
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia;
| | - Marta Wojtyś
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Maria Winiewska-Szajewska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Marija Matković
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Zoran Štefanić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (M.W.); (M.W.-S.); (B.W.-K.)
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia; (D.D.J.); (Z.Š.)
| |
Collapse
|
7
|
Karan R, Renn D, Allers T, Rueping M. A systematic analysis of affinity tags in the haloarchaeal expression system, Haloferax volcanii for protein purification. Front Microbiol 2024; 15:1403623. [PMID: 38873150 PMCID: PMC11169840 DOI: 10.3389/fmicb.2024.1403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Extremophilic proteins are valuable in various fields, but their expression can be challenging in traditional hosts like Escherichia coli due to misfolding and aggregation. Haloferax volcanii (H. volcanii), a halophilic expression system, offers a solution. This study examined cleavable and non-cleavable purification tags at both the N- and C-termini when fused with the superfolder green fluorescent protein (sfGFP) in H. volcanii. Our findings reveal that an N-terminal 8xHis-tag or Strep-tag®II significantly enhances protein production, purity, and yield in H. volcanii. Further experiments with mCherry and halophilic alcohol dehydrogenase (ADH) showed improved expression and purification yields when the 8xHis-tag or Strep-tag®II was positioned at the C-terminus for mCherry and at the N-terminus for ADH. Co-positioning 8xHis-tag and Twin-Strep-tag® at the N-terminus of sfGFP, mCherry, and ADH yielded significantly enhanced results. These findings highlight the importance of thoughtful purification tag design and selection in H. volcanii, providing valuable insights for improving protein production and purification with the potential to advance biotechnological applications.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Dominik Renn
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Zhao H, He T, Yao S, Tao L, Zhang X, Wang Z, Cui Z, Chen R. Improved Protein Removal Performance of PES Hollow-Fiber Ultrafiltration Membrane with Sponge-like Structure. Polymers (Basel) 2024; 16:1194. [PMID: 38732663 PMCID: PMC11085754 DOI: 10.3390/polym16091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
The research used polyethersulfone (PES) as a membrane material, polyvinylpyrrolidone (PVP) k30 and polyethylene glycol 400 (PEG 400) as water-soluble additives, and dimethylacetamide (DMAc) as a solvent to prepare hollow-fiber ultrafiltration membranes through a nonsolvent-induced phase separation (NIPS) process. The hydrophilic nature of PVP-k30 and PEG caused them to accumulate on the membrane surface during phase separation. The morphology, chemical composition, surface charge, and pore size of the PES membranes were evaluated by SEM, FTIR, zeta potential, and dextran filtration experiments. The paper also investigated how different spinning solution compositions affected membrane morphology and performance. The separation efficiency of membranes with four different morphologies was tested in single-protein and double-protein mixed solutions. The protein separation effectiveness of the membrane was studied through molecular weight cutoff, zeta potential, and static protein adsorption tests. In addition, the operating pressure and pH value were adjusted to improve ultrafiltration process conditions. The PES membrane with an intact sponge-like structure showed the highest separation factor of 11, making it a prime candidate membrane for the separation of bovine serum albumin (BSA) and lysozyme (LYS). The membrane had a minimal static protein adsorption capacity of 48 mg/cm2 and had excellent anti-fouling properties. When pH = 4, the BSA retention rate was 93% and the LYS retention rate was 23%. Furthermore, it exhibited excellent stability over a pH range of 1-13, confirming its suitability for protein separation applications.
Collapse
Affiliation(s)
- Huyang Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Ting He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Shuang Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Long Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Xinhai Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (H.Z.); (T.H.); (L.T.); (X.Z.); (R.C.)
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
9
|
Jacquier JC, Duffy C, O'Sullivan M, Dillon E. Copper-Chelated Chitosan Microgels for the Selective Enrichment of Small Cationic Peptides. Gels 2024; 10:289. [PMID: 38786205 PMCID: PMC11121711 DOI: 10.3390/gels10050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Copper-chelated chitosan microgels were investigated as an immobilized metal affinity chromatography (IMAC) phase for peptide separation. The copper-crosslinked chitosan beads were shown to strongly interact with a range of amino acids, in a wide range of pH and saline conditions. The beads exhibited an affinity that seemed to depend on the isoelectric point of the amino acid, with the extent of uptake increasing with decreasing isoelectric point. This selective interaction with anionic amino acids resulted in a significant relative enrichment of the supernatant solution in cationic amino acids. The beads were then studied as a novel fractionation system for complex milk hydrolysates. The copper chitosan beads selectively removed larger peptides from the hydrolysate aqueous solution, yielding a solution relatively enriched in medium and smaller peptides, which was characterized both quantitatively and qualitatively by size exclusion chromatography (SEC). Liquid chromatography-mass spectrometry (LCMS) work provided comprehensive data on a peptide sequence level and showed that a depletion of the anionic peptides by the beads resulted in a relative enrichment of the cationic peptides in the supernatant solution. It could be concluded that after fractionation a dramatic relative enrichment in respect to small- and medium-sized cationic peptides in the solution, characteristics that have been linked to bioactivities, such as anti-microbial and cell-penetrating properties. The results demonstrate the use of the chitosan copper gel bead system in lab scale fractionation of complex hydrolysate mixtures, with the potential to enhance milk hydrolysate bioactivity.
Collapse
Affiliation(s)
- Jean-Christophe Jacquier
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ciara Duffy
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michael O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Eugène Dillon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
10
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Jin H, Cui D, Fan Y, Li G, Zhong Z, Wang Y. Recent advances in bioaffinity strategies for preclinical and clinical drug discovery: Screening natural products, small molecules and antibodies. Drug Discov Today 2024; 29:103885. [PMID: 38278476 DOI: 10.1016/j.drudis.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Bioaffinity drug screening strategies have gained popularity in preclinical and clinical drug discovery for natural products, small molecules and antibodies owing to their superior selectivity, the large number of compounds to be screened and their ability to minimize the time and expenses of the drug discovery process. This paper provides a systematic summary of the principles of commonly used bioaffinity-based screening methods, elaborates on the success of bioaffinity in clinical drug development and summarizes the active compounds, preclinical drugs and marketed drugs obtained through affinity screening methods. Owing to the high demand for new drugs, bioaffinity-guided screening techniques will play a greater part in clinical drug development.
Collapse
Affiliation(s)
- Haochun Jin
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dianxin Cui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
12
|
Zhang Y, Meng Z, Li S, Liu T, Song J, Li J, Zhang X. Two Antimicrobial Peptides Derived from Bacillus and Their Properties. Molecules 2023; 28:7899. [PMID: 38067628 PMCID: PMC10708539 DOI: 10.3390/molecules28237899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Growth promotion and disease prevention are important strategies in the modern husbandry industry, and for this reason, antibiotics are widely used as animal feed additives. However, the overuse of antibiotics has led to the serious problem of increasing resistance of pathogenic microorganisms, posing a major threat to the environment and human health. "Limiting antibiotics" and "Banning antibiotics" have become the inevitable trends in the development of the livestock feed industry, so the search for alternative antimicrobial agents has become a top priority. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this study, two strains of Bacillus velezensis 9-1 and B. inaquosorum 76-1 with good antibacterial activity were isolated from commercial feed additives, and the antimicrobial peptides produced by them were purified by ammonium sulfate precipitation, anion exchange chromatography, gel chromatography, and RP-HPLC. Finally, two small molecule peptides, named peptide-I and peptide-II, were obtained from strain 9-1 and 76-1, respectively. The molecular weight and sequences of the peptides were analyzed and identified by LC-MS/MS, which were 988.5706 Da and VFLENVLR, and 1286.6255 Da and FSGSGSGTAFTLR, respectively. The results of an antibacterial activity and stability study showed that the two peptides had good antibacterial activity against Staphylococcus aureus, B. cereus, and Salmonella enterica, and the minimum inhibitory concentrations were 64 μg/mL and 16 μg/mL, 32 μg/mL and 64 μg/mL, and 8 μg/mL and 8 μg/mL, respectively. All of them have good heat, acid, and alkali resistance and protease stability, and can be further developed as feed antibiotic substitutes.
Collapse
Affiliation(s)
- Yujia Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China; (Y.Z.); (Z.M.); (S.L.)
| | - Zinuo Meng
- College of Life Sciences, Hebei University, Baoding 071002, China; (Y.Z.); (Z.M.); (S.L.)
| | - Shilong Li
- College of Life Sciences, Hebei University, Baoding 071002, China; (Y.Z.); (Z.M.); (S.L.)
| | - Ting Liu
- The Laboratory and Pathology Department, The Hospital of 82nd Group Army PLA, Baoding 071001, China; (T.L.); (J.S.)
| | - Juan Song
- The Laboratory and Pathology Department, The Hospital of 82nd Group Army PLA, Baoding 071001, China; (T.L.); (J.S.)
| | - Jia Li
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China;
| | - Xiumin Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China; (Y.Z.); (Z.M.); (S.L.)
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| |
Collapse
|
13
|
Ren Y, Ye P, Zhang L, Zhao J, Liu J, Lei J, Wang L. Three-dimensional porous wood monolithic columns for efficient purification of spike glycoprotein of SARS-CoV-2. Int J Biol Macromol 2023; 248:125713. [PMID: 37437676 DOI: 10.1016/j.ijbiomac.2023.125713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Considerable research has been devoted to finding a cost-effective chromatographic matrix with efficient adsorption and high throughput. Wood exhibits complex micro-network structures that make it a powerful contender for a novel environment-friendly chromatographic matrix material. We demonstrate a novel strategy to manufacture a wood monolithic column, which chemically modified the wood and imported diethyl aminoethyl, diethylamine, and amino groups. This wood monolithic column can maintain fully monolithic column performances and highly selective to spike glycoprotein of SARS-CoV-2 by ion exchange force. The wood monolithic column was evaluated by static adsorption, dynamic adsorption, and frontal analysis. The results showed that the static adsorption capacity of the wood monolithic column with 2-diethylaminoethylchloride hydrochloride for bovine serum albumin was 14.72 mg/g, and the adsorption process was chemisorption. In addition, it retained 80 % adsorption capacity after 110 repeated adsorption-elution cycles.
Collapse
Affiliation(s)
- Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jingyang Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Guo J, Chen N, Tan F, Zhou J, Xiang H, Luo Y, Zhou Z. iTRAQ-based proteomic analysis of imiquimod in the treatment of ulcerative colitis. Am J Transl Res 2023; 15:4454-4466. [PMID: 37560232 PMCID: PMC10408506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE In this study, we explored the potential mechanisms and the signaling pathways involved in the treatment of Ulcerative Colitis (UC) with imiquimod (IMQ). METHODS The UC mouse model was established by treating C57BL/6J mice with 3% Dextran Sulfate Sodium (DSS). Then, the UC-related symptoms were examined. Disease Activity Index (DAI) was estimated based on weight loss, stool consistency, and occult bleeding or hematochezia. Histological changes were evaluated by Hematoxylin and Eosin (H&E) staining. Furthermore, we used multiplexed Isobaric Tagging for Relative and Absolute Protein Quantification (iTRAQ) technique coupled with high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the differentially expressed proteins (DEPs). RESULTS Administration of 3% DSS for 7 days induced acute colitis associated with diarrhea, hematochezia, weight loss, and colon shortening. However, after IMQ administration, almost all the above symptoms were improved by different degrees. Specifically, the DAI, histological disorder, and colon shortening were attenuated. In iTRAQ analysis, a total of 4170 proteins were identified with a high confidence (≥ 95% confidence). The numbers of DEPs between the normal and UC model mice, between the normal and the IMQ-treated therapy mice, as well as between the model and the therapy mice were 317, 253, and 209, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEPs involved in the complement and coagulation cascades were downregulated in IMQ-treated therapy group. CONCLUSIONS IMQ might ameliorate colitis by suppressing the complement and coagulation cascades pathway, which might serve as new therapeutic strategies for the treatment of patients with UC.
Collapse
Affiliation(s)
- Jinkun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Na Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Feifei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Julan Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Hongyu Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Yu Luo
- Jingmen Hospital of Traditional Chinese MedicineJingmen 448001, Hubei, China
| | - Zhongyin Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| |
Collapse
|