1
|
Rayat Pisheh H, Darvishi A, Masoomkhah SS. Amniotic membrane, a novel bioscaffold in cardiac diseases: from mechanism to applications. Front Bioeng Biotechnol 2024; 12:1521462. [PMID: 39758951 PMCID: PMC11696288 DOI: 10.3389/fbioe.2024.1521462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases represent one of the leading causes of death worldwide. Despite significant advances in the diagnosis and treatment of these diseases, numerous challenges remain in managing them. One of these challenges is the need for replacements for damaged cardiac tissues that can restore the normal function of the heart. Amniotic membrane, as a biological scaffold with unique properties, has attracted the attention of many researchers in recent years. This membrane, extracted from the human placenta, contains growth factors, cytokines, and other biomolecules that play a crucial role in tissue repair. Its anti-inflammatory, antibacterial, and wound-healing properties have made amniotic membrane a promising option for the treatment of heart diseases. This review article examines the applications of amniotic membrane in cardiovascular diseases. By focusing on the mechanisms of action of this biological scaffold and the results of clinical studies, an attempt will be made to evaluate the potential of using amniotic membrane in the treatment of heart diseases. Additionally, the existing challenges and future prospects in this field will be discussed.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
2
|
A B, V G, S D, Ph P, E K, D M, G S, R PDL, Ee G. Severe corneal manifestations of graft-versus-host disease: Experience of a tertiary referral center. Ocul Surf 2024; 36:19-24. [PMID: 39709126 DOI: 10.1016/j.jtos.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE Graft-versus-host disease (GVHD) is a common complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). GVHD may affect several organs, including ocular manifestations, ranging from dry eye syndrome to sight-threatening corneal ulceration or perforation. Limited information is available about characteristics and treatments of ocular GVHD and its relation to general prognosis. METHODS We retrospectively analyzed data from 140 patients from a tertiary ophthalmological center and confronted it with systemic data from a national bone marrow transplantation database. RESULTS Most patients were treated with artificial tears, vitamin A ointment, topical anti-inflammatory agents (mostly cyclosporin and steroid drops), autologous serum eye drops, scleral lenses and punctal silicone plugs. We identified a high proportion of severe ocular manifestations, such as corneal ulceration or perforation (33 patients, 23.6 %), occurring with a median of 39 months (interquartile range (IQR): 16-96) after transplantation. Overall survival did not differ in patients with severe to non-severe ocular GVHD (5-year mortality of 8 % without and 13 % with severe ocular involvement, p = 0.53 for survival curves comparisons). Multivariate analysis revealed that male patients and HLA mismatch allo-HSCT were independently associated with an increased risk of severe ocular manifestations. Moreover, a high proportion of complications occurred after non-steroidal anti-inflammatory drug (NSAID) treatments. CONCLUSIONS Patients with GVHD should therefore undergo close ophthalmological monitoring and they should not, in any case, be treated with local ocular NSAIDs, due to the severity of potential complications.
Collapse
Affiliation(s)
- Bourdin A
- Department of Prof. Gabison, A. De Rothschild Foundation Hospital, Paris, France
| | - Gournay V
- Bone Marrow Transplantation Hematology Department, Saint-Louis Hospital, Paris, France
| | - Doan S
- Department of Prof. Gabison, A. De Rothschild Foundation Hospital, Paris, France
| | - Prata Ph
- Bone Marrow Transplantation Hematology Department, Saint-Louis Hospital, Paris, France
| | - Kaphan E
- Bone Marrow Transplantation Hematology Department, Saint-Louis Hospital, Paris, France
| | - Michonneau D
- Bone Marrow Transplantation Hematology Department, Saint-Louis Hospital, Paris, France; INSERM U976, Saint-Louis Institute of Research, Université Paris Cité, F-75010, Paris, France
| | - Socié G
- Bone Marrow Transplantation Hematology Department, Saint-Louis Hospital, Paris, France; INSERM U976, Saint-Louis Institute of Research, Université Paris Cité, F-75010, Paris, France; Université Paris Cité, Paris, France
| | - Peffault de Latour R
- Bone Marrow Transplantation Hematology Department, Saint-Louis Hospital, Paris, France; INSERM U976, Saint-Louis Institute of Research, Université Paris Cité, F-75010, Paris, France; Université Paris Cité, Paris, France
| | - Gabison Ee
- Department of Prof. Gabison, A. De Rothschild Foundation Hospital, Paris, France.
| |
Collapse
|
3
|
Kim SG. Dehydrated Human Amnion-Chorion Membrane as a Bioactive Scaffold for Dental Pulp Tissue Regeneration. Biomimetics (Basel) 2024; 9:771. [PMID: 39727775 DOI: 10.3390/biomimetics9120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The dehydrated human amnion-chorion membranes (dHACMs) derived from the human placenta have emerged as a promising biomaterial for dental pulp regeneration owing to their unique biological and structural properties. The purpose of this review is to explore the potentials of dHACMs in dental pulp tissue engineering, focusing on their ability to promote cellular proliferation, differentiation, angiogenesis, and neurogenesis. dHACMs are rich in extracellular matrix proteins and growth factors such as TGF-β1, FGF2, and VEGF. They also exhibit significant anti-inflammatory and antimicrobial properties, creating an optimal environment for dental pulp regeneration. The applications of dHACMs in regenerative endodontic procedures are discussed, highlighting their ability to support the formation of dentin and well-vascularized pulp-like tissue. This review demonstrates that dHACMs hold significant potential for enhancing the success of pulp regeneration and offer a biologically based approach to preserve tooth vitality and improve tooth survival. Future research is expected to focus on conducting long-term clinical studies to establish their efficacy and safety.
Collapse
Affiliation(s)
- Sahng G Kim
- Division of Endodontics, Columbia University College of Dental Medicine, New York, NY 10032, USA
| |
Collapse
|
4
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10822-3. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rouzaire M, Blanchon L, Sapin V, Gallot D. Application of Fetal Membranes and Natural Materials for Wound and Tissue Repair. Int J Mol Sci 2024; 25:11893. [PMID: 39595963 PMCID: PMC11594142 DOI: 10.3390/ijms252211893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The human fetal membrane is a globally accepted biological biomaterial for wound and tissue repair and regeneration in numerous fields, including dermatology, ophthalmology, and more recently orthopedics, maxillofacial and oral surgery, and nerve regeneration. Both cells and matrix components of amnion and chorion are beneficial, releasing a diverse range of growth factors, cytokines, peptides, and soluble extracellular matrix components. Beside fetal membranes, numerous natural materials have also been reported to promote wound healing. The biological properties of these materials may potentiate the pro-healing action of fetal membranes. Comparison of such materials with fetal membranes has been scant, and their combined use with fetal membranes has been underexplored. This review presents an up-to-date overview of (i) clinical applications of human fetal membranes in wound healing and tissue regeneration; (ii) studies comparing human fetal membranes with natural materials for promoting wound healing; and (iii) the literature on the combined use of fetal membranes and natural pro-healing materials.
Collapse
Affiliation(s)
- Marion Rouzaire
- Obstetrics and Gynaecology Department, Centre Hospitalier Universitaire Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Loïc Blanchon
- “Translational Approach to Epithelial Injury and Repair” Team, Auvergne University, CNRS 6293, Inserm 1103, iGReD, 63000 Clermont-Ferrand, France; (L.B.); (V.S.)
| | - Vincent Sapin
- “Translational Approach to Epithelial Injury and Repair” Team, Auvergne University, CNRS 6293, Inserm 1103, iGReD, 63000 Clermont-Ferrand, France; (L.B.); (V.S.)
- Biochemistry and Molecular Genetic Department, Centre Hospitalier Universitaire Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Denis Gallot
- Obstetrics and Gynaecology Department, Centre Hospitalier Universitaire Clermont-Ferrand, 63000 Clermont-Ferrand, France;
- “Translational Approach to Epithelial Injury and Repair” Team, Auvergne University, CNRS 6293, Inserm 1103, iGReD, 63000 Clermont-Ferrand, France; (L.B.); (V.S.)
| |
Collapse
|
6
|
Heydari P, Mojahedi M, Javaherchi P, Sharifi M, Kharazi AZ. Advances and impact of human amniotic membrane and human amniotic-based materials in wound healing application. Int J Biol Macromol 2024; 281:136596. [PMID: 39419158 DOI: 10.1016/j.ijbiomac.2024.136596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complicated process, especially when surgical, traumatic, burn, or pathological injury occurs, which requires different kinds of dressing covers including hydrogels, hydrocolloids, alginates foams and films for treatment. The human amniotic membrane (hAM) is a biodegradable extracellular matrix with unique and tailorable physicochemical and biological properties, generated by the membrane itself or other cells that are located on the membrane surface. It is noted as a promising aid for wound healing and tissue regeneration due to the release of growth factors and cytokines, and its antibacterial and immunosuppressive properties. Moreover, hAM has optimal physical, biological, and mechanical properties, which makes it a much better option as a regenerative skin treatment than existing alternative materials. In addition, this layer has a structure with different layers and cells with different functions, which act as a regenerative geometry and reservoir of bioactive substances and cells for wound healing. In the present work, the structural and biological features of hAM are introduced as well as the application of this layer in different forms of composites to enhance wound healing. Future studies are recommended to detect possible further functionalization to enhance the hAM effectiveness on wound healing.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mojahedi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Javaherchi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maede Sharifi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Treger D, Sturm S, Thaller SR. Snowflake Amniotic Membrane in Scalp Reconstruction for Pitbull Bite. J Craniofac Surg 2024; 35:e660-e662. [PMID: 39016378 DOI: 10.1097/scs.0000000000010475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Amniotic membrane, derived from the innermost placenta, is widely employed in surgery to help regenerate soft tissue and promote re-epithelialization. The authors detail a case report of a 59-year-old female who presented with a large, full-thickness scalp avulsion injury (13 × 10 cm) after being attacked by her pet pitbull. Innovative application of "snowflake" or fragmented amniotic membrane to her wound bed was used during both stages of scalp reconstruction: irrigation and debridement with Integra biological membrane placement and later split-thickness skin grafting. The patient had an uncomplicated recovery with a satisfactory cosmetic outcome. The authors believe that the "snowflake" application of amniotic membrane played an important role in forming healthy granulation tissue and optimizing the wound bed for definitive coverage. "Snowflake" amniotic membrane may help maximize its mechanical and biological benefits and holds promise to be an important adjunctive treatment for surgical wound healing.
Collapse
Affiliation(s)
- Dylan Treger
- University of Miami Leonard M. Miller School of Medicine
| | - Savanah Sturm
- University of Miami Leonard M. Miller School of Medicine
| | - Seth R Thaller
- Dewitt Daughtry Department of Surgery, Division of Plastic Surgery, University of Miami Hospital
| |
Collapse
|
8
|
Santos FDRP, Kawata BA, de Oliveira Heinzelmann TR, Belfort MGS, Crispim de Oliveira Carvalho M, Móbille Awoyama S, Gomes de Oliveira Neto J, José de Lima C, Barrinha Fernandes A. De-Epithelization of the Human Amniotic Membrane Using a System Involving Ozonated Water and Ultrasound. Bioengineering (Basel) 2024; 11:987. [PMID: 39451363 PMCID: PMC11504975 DOI: 10.3390/bioengineering11100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
The aim of this study was to evaluate whether a system involving ozonated water and ultrasound causes de-epithelization of the human amniotic membrane (HAM). The experiment protocol was carried out in four stages. Stage I was carried out to determine the duration of the experiment. Stage II comprised the first experiment, involving four groups of samples studied in triplicate: control/natural (IN), processed with ultrasound in a liquid medium (US), processed with ozonated water (O3), and processed with ozonated water combined with ultrasound (US_O3). Stage III was performed to confirm the results, following the same steps present in Stage II. Stage IV involved the use of oxygen to confirm the hypothesis. Histological analysis was carried out to verify whether the effects of O2 were similar to those of O3. The system was activated, and ozonation was carried out for 10 min, as in the previous experiment, reaching a concentration level of 3.0 mg/L. The samples were submerged and positioned in the reservoir and processed separately for 55 min. The biochemical properties were assessed using Fourier transform infrared spectroscopy, and the morphology was examined using histology and scanning electron microscopy. The spectra of the samples exhibited similarities; however, subtle changes were highlighted, such as smooth band shifts and intensity changes. The morphology indicated that ultrasound achieved more efficient HAM de-epithelialization compared to ultrasound combined with ozonated water and ozonated water alone. One plausible hypothesis for this observation is that cavitation represents the primary mechanism responsible for de-epithelialization. When ultrasound is combined with ozone, the bubbles generated by ozone gas reduce the cavitation effect. This study is pioneering as it demonstrates an ultrasound system capable of the efficient de-epithelialization of the HAM.
Collapse
Affiliation(s)
- Francisco Dimitre Rodrigo Pereira Santos
- Postgraduate Program in Biomedical Engineering, Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São José dos Campos 12247-004, São Paulo, Brazil; (T.R.d.O.H.); (M.G.S.B.); (M.C.d.O.C.); (C.J.d.L.); (A.B.F.)
- Department of Medicine, Universidade Estadual do Tocantins (UNITINS), Augustinópolis 77960-000, Tocantins, Brazil
- Instituto de Ensino Superior do Sul do Maranhão (IESMA), Imperatriz 65907-070, Maranhão, Brazil
| | - Bianca Akemi Kawata
- Coordination of Research and Technological Development from Instituto Nacional de Pesquisas Espaciais (COPDT/INPE), São José dos Campos 12201-970, São Paulo, Brazil;
| | - Tatiana Regina de Oliveira Heinzelmann
- Postgraduate Program in Biomedical Engineering, Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São José dos Campos 12247-004, São Paulo, Brazil; (T.R.d.O.H.); (M.G.S.B.); (M.C.d.O.C.); (C.J.d.L.); (A.B.F.)
- Centro de Inovação, Tecnologia e Educação (CITÉ), São José dos Campos 12247-004, São Paulo, Brazil;
| | - Marcia Guelma Santos Belfort
- Postgraduate Program in Biomedical Engineering, Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São José dos Campos 12247-004, São Paulo, Brazil; (T.R.d.O.H.); (M.G.S.B.); (M.C.d.O.C.); (C.J.d.L.); (A.B.F.)
- Instituto de Ensino Superior do Sul do Maranhão (IESMA), Imperatriz 65907-070, Maranhão, Brazil
| | - Maycon Crispim de Oliveira Carvalho
- Postgraduate Program in Biomedical Engineering, Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São José dos Campos 12247-004, São Paulo, Brazil; (T.R.d.O.H.); (M.G.S.B.); (M.C.d.O.C.); (C.J.d.L.); (A.B.F.)
- Centro de Inovação, Tecnologia e Educação (CITÉ), São José dos Campos 12247-004, São Paulo, Brazil;
| | - Sílvia Móbille Awoyama
- Centro de Inovação, Tecnologia e Educação (CITÉ), São José dos Campos 12247-004, São Paulo, Brazil;
- College of Pharmacy, Centro Universitário FUNVIC-UNIFUNVIC, Pindamonhangaba 12412-825, São Paulo, Brazil
| | - João Gomes de Oliveira Neto
- Postgraduate Program in Materials Science, Universidade Federal do Maranhã (UFMA), Imperatriz 65915-060, Maranhão, Brazil;
| | - Carlos José de Lima
- Postgraduate Program in Biomedical Engineering, Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São José dos Campos 12247-004, São Paulo, Brazil; (T.R.d.O.H.); (M.G.S.B.); (M.C.d.O.C.); (C.J.d.L.); (A.B.F.)
- Centro de Inovação, Tecnologia e Educação (CITÉ), São José dos Campos 12247-004, São Paulo, Brazil;
| | - Adriana Barrinha Fernandes
- Postgraduate Program in Biomedical Engineering, Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São José dos Campos 12247-004, São Paulo, Brazil; (T.R.d.O.H.); (M.G.S.B.); (M.C.d.O.C.); (C.J.d.L.); (A.B.F.)
- Centro de Inovação, Tecnologia e Educação (CITÉ), São José dos Campos 12247-004, São Paulo, Brazil;
| |
Collapse
|
9
|
Hristova R, Yankova P, Markov G, Oscar A, Zdravkov Y. Effect of autologous serum after amniotic membrane transplantation for persistent corneal ulcers. Int J Ophthalmol 2024; 17:1639-1644. [PMID: 39296570 PMCID: PMC11367430 DOI: 10.18240/ijo.2024.09.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/13/2024] [Indexed: 09/21/2024] Open
Abstract
AIM To investigate the effect of adding autologous serum eye drops to the postoperative regime after amniotic membrane transplantation for severe persistent corneal ulcers. METHODS Forty eyes of 40 patients with persistent corneal ulcers were randomly assigned to artificial tears (sodium hyaluronate 0.2%, ATs group, n=20) or autologous serum eye drops (ASEDs, n=20) following treatment with amniotic membrane transplantation. Digital slit lamp images were acquired from all patients before and 30d post treatment. The area with fibrovascular tissue was calculated using Image J. Central corneal sensitivity was assessed by Cochet-Bonnet aesthesiometry before and one month after treatment. Scar tissue transparency was assessed with a novel optical densitometry. RESULTS Mean age of patients was 61.65±16.47y and 57.3±19.11y in the ATs group and ASEDs group, respectively. Twenty-two male and 18 female patients were included in the study. The improvement in visual acuity was significantly greater in the ASEDs group (0.14±0.04) than the ATs (0.08±0.04; P=0.00046). Cochet-Bonnet aesthesiometry improved significantly after treatment with a similar rate between groups. There were no statistically significant differences in the area of postoperative fibrovascular tissue between the two groups (P=0.082). The success rate in the two groups was similar. The difference in densitometry between the ATs and ASEDs group was statistically significant (P=0.042) with greater reduction from baseline in the ASEDS group. CONCLUSION Autologous serum eye drops can lead to better visual acuity, more stable results and improved densitometry and should be considered in the postoperative care following amniotic membrane transplantation.
Collapse
Affiliation(s)
- Rozaliya Hristova
- Department of Ophthalmology, Medical University Sofia, University Hospital Alexandrovska, Sofia 1431, Bulgaria
| | - Petya Yankova
- Department of Clinical Immunology, Medical University Sofia, University Hospital Alexandrovska, Sofia 1431, Bulgaria
| | - Georgi Markov
- Department of Ophthalmology, Medical University Sofia, University Hospital Alexandrovska, Sofia 1431, Bulgaria
| | - Alexander Oscar
- Department of Ophthalmology, Medical University Sofia, University Hospital Alexandrovska, Sofia 1431, Bulgaria
| | - Yani Zdravkov
- Department of Ophthalmology, Medical University Sofia, University Hospital Alexandrovska, Sofia 1431, Bulgaria
| |
Collapse
|
10
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
11
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
12
|
Hosty L, Heatherington T, Quondamatteo F, Browne S. Extracellular matrix-inspired biomaterials for wound healing. Mol Biol Rep 2024; 51:830. [PMID: 39037470 PMCID: PMC11263448 DOI: 10.1007/s11033-024-09750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.
Collapse
Affiliation(s)
- Louise Hosty
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Thomas Heatherington
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÙRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
13
|
Moreno S, Massee M, Campbell S, Bara H, Koob TJ, Harper JR. PURION ® processed human amnion chorion membrane allografts retain material and biological properties supportive of soft tissue repair. J Biomater Appl 2024; 39:24-39. [PMID: 38616137 PMCID: PMC11118792 DOI: 10.1177/08853282241246034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The reparative properties of amniotic membrane allografts are well-suited for a broad spectrum of specialties. Further enhancement of their utility can be achieved by designing to the needs of each application through the development of novel processing techniques and tissue configurations. As such, this study evaluated the material characteristics and biological properties of two PURION® processed amniotic membrane products, a lyophilized human amnion, intermediate layer, and chorion membrane (LHACM) and a dehydrated human amnion, chorion membrane (DHACM). LHACM is thicker; therefore, its handling properties are ideal for deep, soft tissue deficits; whereas DHACM is more similar to a film-like overlay and may be used for shallow defects or surgical on-lays. Characterization of the similarities and differences between LHACM and DHACM was conducted through a series of in vitro and in vivo studies relevant to the healing cascade. Compositional analysis was performed through histological staining along with assessment of barrier membrane properties through equilibrium dialysis. In vitro cellular response was assessed in fibroblasts and endothelial cells using cell proliferation, migration, and metabolic assays. The in vivo cellular response was assessed in an athymic nude mouse subcutaneous implantation model. The results indicated the PURION® process preserved the native membrane structure, nonviable cells and collagen distributed in the individual layers of both products. Although, LHACM is thicker than DHACM, a similar composition of growth factors, cytokines, chemokines and proteases is retained and consequently elicit comparable in vitro and in vivo cellular responses. In culture, both treatments behaved as potent mitogens, chemoattractants and stimulants, which translated to the promotion of cellular infiltration, neocollagen deposition and angiogenesis in a murine model. PURION® processed LHACM and DHACM differ in physical properties but possess similar in vitro and in vivo activities highlighting the impact of processing method on the versatility of clinical use of amniotic membrane allografts.
Collapse
|
14
|
Wowra B, Wysocka-Kosmulska M, Dobrowolski D, Wylęgała E. Superficial Keratectomy Alone versus in Combination with Amniotic Membrane Transplantation in Aniridia-Associated Keratopathy and a Short-Term Clinical Outcome. J Clin Med 2024; 13:3258. [PMID: 38892970 PMCID: PMC11173058 DOI: 10.3390/jcm13113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Aniridia-associated keratopathy (AAK) is a potentially vision-threatening pathology in congenital aniridia, for which both the underlying etiopathogenesis and effective treatment remain unclear. Methods:This prospective study was conducted to assess and compare the short-term outcome after superficial keratectomy (SK) alone or in a combination with an amniotic membrane transplantation (AMT). Here, 76 eyes were enrolled in 76 patients with grade 4 AAK. In all eyes, in order to assess preoperatively the efficiency of the limbal epithelial stem cells (LESC), the presence of corneal epithelial cells in confocal microscopy was established. The analyses included: best corrected visual acuity (BCVA), the stage of AAK and the number of corneal quadrants involved in corneal neovascularization (CNV). Results: Six months after surgery, the mean BCVA was 0.05 and ranged from 0.002 up to 0.1 in both groups. Improvement in BCVA occurred in 94.29% patients when *SK alone* was performed, and in 92.68% when in combination with AMT. There were no statistically significant differences in the effect of therapy depending on the type of surgery, regarding BCVA, stage of AAK and the number of quadrants with CNV. Conclusions: SK alone is an effective procedure in short outcomes limited to six months for advanced AAK in association with LESC partial efficiency.
Collapse
Affiliation(s)
- Bogumił Wowra
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Marzena Wysocka-Kosmulska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland
| | - Dariusz Dobrowolski
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
- Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| |
Collapse
|
15
|
Kadivar M, Sangsari R, Rostamli S, Sotoudeh S, Mirnia K. Amniotic membrane dressings for treatment of aplasia cutis in newborns. Pediatr Dermatol 2024; 41:445-450. [PMID: 38409959 DOI: 10.1111/pde.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/13/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Aplasia cutis congenita (ACC) is a rare congenital skin defect characterized by a focal or extensive absence of the epidermis, dermis, and occasionally, subcutaneous tissue. When the wound caused by this defect is wide or deep, various treatments are used, including skin grafting. The amniotic membrane (AM) is a biological dressing that facilitates re-epithelialization as it contains mesenchymal cells and numerous growth factors. OBJECTIVE To report the efficacy of AM dressings in treating the skin defects of ACC. METHOD This study was conducted on five neonates diagnosed with ACC born between 2018 and 2022, referred to the Children's Medical Center in Tehran, Iran. AM dressings were applied on wounds larger than 1 cm2. The wounds were assessed weekly and, if required, an additional AM dressing was applied. RESULTS The skin defects gradually re-epithelialized after application of the AM. The complete healing process took around 3.5 weeks on average. No hypertrophic scarring was observed. CONCLUSION The application of AM dressing resulted in satisfactory cosmetic outcomes, with no hypertrophic scar formation. Complete healing occurred in all cases except one. The length of the hospital stay ranged from 2 to 6 weeks, depending on the size of the wound.
Collapse
Affiliation(s)
- Maliheh Kadivar
- Department of Pediatrics, Division of Neonatology, School of Medicine, Tehran University of Medical Sciences, Children's Medical Center, Tehran, Iran
| | - Razieh Sangsari
- Department of Pediatrics, Division of Neonatology, School of Medicine, Tehran University of Medical Sciences, Children's Medical Center, Tehran, Iran
| | - Somayeh Rostamli
- Neonatal Intensive Care Nursing, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sotoudeh
- Department of Dermatology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayvan Mirnia
- Department of Pediatrics, Division of Neonatology, School of Medicine, Tehran University of Medical Sciences, Children's Medical Center, Tehran, Iran
| |
Collapse
|
16
|
Botelho T, Kawata BA, Móbille Awoyama S, Laurindo Igreja Marrafa PA, Carvalho HC, de Lima CJ, Barrinha Fernandes A. Sterilization of Human Amniotic Membrane Using an Ozone Hydrodynamic System. Ann Biomed Eng 2024; 52:1425-1434. [PMID: 38411861 DOI: 10.1007/s10439-024-03467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Human amniotic membrane (hAM) is an important biomaterial for Tissue Engineering, due to its great regenerative properties and potential use as a scaffold. The most used procedure to sterilize biomaterials is gamma-irradiation, but this method can affect several properties, causing damage to the structure and reducing the growth factors. The present work evaluated the efficiency of a new method based on ozonated dynamic water for hAM sterilization. HAM fragments were experimentally contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, Staphylococcus epidermidis, and Clostridium sporogenes (106 CFU/mL) and submitted to sterilization process for 5, 10 and 15 min. The analyses did not reveal microbial activity after 10 min for S. aureus and C. sporogenes and after 15 min for E. coli and S. epidermidis. The microbial activity of C. albicans was reduced with the exposure time increase, but the evaluated time was insufficient for complete sterilization. The depyrogenation process was investigated for different ozonation times (15, 20, 25, 30, and 35 min) to evaluate the ozone sterilization potential and presented promising results after 35 min. The ozone effect on hAM structure was evaluated by histological analysis. A decrease in epithelium average thickness was observed with the exposure time increase. Furthermore, some damage in the epithelium was observed when hAM was exposed for 10 and 15 min. It can indicate that ozone, besides being effective in sterilization, could promote the hAM sample's de-epithelization, becoming a possible new method for removing the epithelial layer to use hAM as a scaffold.
Collapse
Affiliation(s)
- Túlia Botelho
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Faculdade Santo Antônio - FSA, Caçapava, SP, Brazil
| | - Bianca Akemi Kawata
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil.
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil.
| | - Silvia Móbille Awoyama
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Centro Universitário FUNVIC - UNIFUNVIC, College of Pharmacy, Pindamonhangaba, SP, 12412-825, Brazil
| | - Pedro Augusto Laurindo Igreja Marrafa
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil
| | - Henrique Cunha Carvalho
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Tecnológica Federal do Paraná - UTFPR, Campo Mourão, PR, 87301-899, Brazil
| | - Carlos José de Lima
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil
| | - Adriana Barrinha Fernandes
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil
| |
Collapse
|
17
|
Xu L, Yang T, Wen M, Wen D, Jin C, An M, Wang L, Liu Y, Fan J. Frontiers in the Etiology and Treatment of Preterm Premature Rupture of Membrane: From Molecular Mechanisms to Innovative Therapeutic Strategies. Reprod Sci 2024; 31:917-931. [PMID: 37989803 DOI: 10.1007/s43032-023-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Preterm premature rupture of membranes (pPROM) poses a significant threat to fetal viability and increases the risk for newborn morbidities. The perinatal period of preterm infants affected by pPROM is often characterized by higher rates of mortality and morbidity, with associated risks of cerebral palsy, developmental delays, compromised immune function, respiratory diseases, and sensory impairments. pPROM is believed to result from a variety of causes, including but not limited to microbially induced infections, stretching of fetal membranes, oxidative stress, inflammatory responses, and age-related changes in the fetal-placental interface. Maternal stress, nutritional deficiencies, and medically induced procedures such as fetoscopy are also considered potential contributing factors to pPROM. This comprehensive review explores the potential etiologies leading to pPROM, delves into the intricate molecular mechanisms through which these etiologies cause membrane ruptures, and provides a concise overview of diagnostic and treatment approaches for pPROM. Based on available therapeutic options, this review proposes and explores the possibilities of utilizing a novel composite hydrogel composed of amniotic membrane particles for repairing ruptured fetal membranes, thereby holding promise for its clinical application.
Collapse
Affiliation(s)
- Ludan Xu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Dawei Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Chaoyang Jin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Research Center for Nanobiomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China.
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
18
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
19
|
Hu HQ, Xin XY, Zhu YT, Fan RW, Zhang HL, Ye Y, Li D. Application of mesenchymal stem cell therapy for premature ovarian insufficiency: Recent advances from mechanisms to therapeutics. World J Stem Cells 2024; 16:1-6. [PMID: 38292439 PMCID: PMC10824040 DOI: 10.4252/wjsc.v16.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
The incidence of premature ovarian insufficiency (POI) is increasing worldwide, particularly among younger women, posing a significant challenge to fertility. In addition to menopausal symptoms, POI leads to several complications that profoundly affect female reproductive function and overall health. Unfortunately, current clinical treatment strategies for this condition are limited and often yield unsatisfactory outcomes. These approaches typically involve hormone replacement therapy combined with psychological support. Recently, mesenchymal stem cell (MSC) therapies for POI have garnered considerable attention in global research. MSCs can restore ovarian reproductive and endocrine functions through diverse mechanisms, including controlling differentiation, promoting angiogenesis, regulating ovarian fibrosis, inhibiting apoptosis, enhancing autocrine and paracrine effects, suppressing inflammation, modulating the immune system, and genetic regulation. This editorial offers a succinct summary of the application of MSC therapy in the context of POI, providing evidence for groundbreaking medical approaches that have potential to enhance reproductive health and overall well-being for women.
Collapse
Affiliation(s)
- Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
20
|
Abbas A, Hamad AA, Ballut OO, El-Gayar RM, Negida A, Raslan AM. Human Amniotic Membrane for Dural Repair and Duraplasty: A Systematic Review of Safety and Efficacy. Cureus 2023; 15:e51117. [PMID: 38274915 PMCID: PMC10808866 DOI: 10.7759/cureus.51117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The use of human amniotic membrane (HAM) has recently gained attention as a promising alternative option for duraplasty due to its superior tensile strength, elasticity, and anti-inflammatory and anti-fibrotic properties, offering greater durability and reliability compared to autologous grafts like the muscle fascia and pericranium. This systematic review aimed to evaluate the complications associated with duraplasty using HAM. We comprehensively searched the PubMed, Scopus, and Web of Science databases for studies on duraplasty with HAM. The eligibility criteria included studies on patients who underwent dural repair with duraplasty using HAM, with or without a control group. Duraplasty involves opening the dura mater, the protective covering of the brain and spinal cord, and using a graft to enlarge the space around the cerebellum. Dual repair, on the other hand, involves repairing the dura mater without opening it and then using a patch to enlarge the space around the cerebellum. Randomized controlled trials, observational studies, case series, and case reports were included, and quality assessment was conducted. Our search yielded 191 articles. Ten studies were included, with a total of 560 participants. The overall incidence of cerebrospinal fluid (CSF) leakage was three (0.63%) out of 478 in the HAM group and three (4.76%) out of 63 in the other methods group (pericranium, temporalis fascia, and biological dural substitutes). Regarding the incidence of postoperative complications, the overall incidence was eight (1.92%) out of 417 in the HAM group and two (8%) out of 25 in the other methods group. The overall incidence of meningitis was one (0.67%) out of 150 in the HAM group and three (10%) out of 30 in the other methods group. In conclusion, duraplasty using HAM may be a safe and effective alternative to traditional methods, with a low incidence of CSF leakage and postoperative complications.
Collapse
Affiliation(s)
- Abdallah Abbas
- Neurology, Faculty of Medicine, Al-Azhar University, New Damietta, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Abdullah A Hamad
- Neurology, Faculty of Medicine, Menoufia University, Shibin El-Kom, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Osam O Ballut
- Neurology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Rawan M El-Gayar
- Neurology, Faculty of Medicine, Zagazig University, Zagazig, EGY
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Ahmed Negida
- Neurology, Virginia Commonwealth University, Richmond, USA
- Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, GBR
- Neurology, Medical Research Group of Egypt, Negida Research Academy, Arlington, USA
| | - Ahmed M Raslan
- Neurological Surgery, Oregon Health & Science University, Portland, USA
| |
Collapse
|
21
|
Zhang S, Yu F, Chen J, Yan D, Gong D, Chen L, Chen J, Yao Q. A thin film comprising silk peptide and cellulose nanofibrils implanting on the electrospun poly(lactic acid) fibrous scaffolds for biomedical reconstruction. Int J Biol Macromol 2023; 251:126209. [PMID: 37567522 DOI: 10.1016/j.ijbiomac.2023.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Conjunctival reconstruction using biocompatible polymers constitutes an effective treatment for conjunctival scarring and associated visual impairment. In this work, a thin film comprising silk peptide (SP), cellulose nanofibrils (CNF) and Ag nanoparticles (AgNPs) that implanted on the poly(lactic acid) (PLA) electrospun fibrous membranes (EFMs) was designed for biomedical reconstruction. SP and CNF as thin films can improve the surface hydrophilicity of the as-prepared scaffolds, which synergistically enhanced the biocompatibility. In in vivo experiments, the developed PLA EFMs modified with 3 wt% SP/CNF/AgNPs could be easily manipulated and transplanted onto conjunctival defects in rabbits, consequently accelerating the structural and functional restoration of the ocular surface in 12 days. Additionally, incorporation of 0.30 mg/g AgNPs efficiently reduced the topical application of antibiotics without causing infections. Thus, these resultant scaffolds could not only serve as useful alternatives for conjunctival engineering, but also prevent infections effectively with a very low content of AgNPs.
Collapse
Affiliation(s)
- Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
22
|
Harmon KA, Kammer M, Avery JT, Kimmerling KA, Mowry KC. Retention of Key Characteristics of Unprocessed Chorion Tissue Resulting in a Robust Scaffold to Support Wound Healing. Int J Mol Sci 2023; 24:15786. [PMID: 37958770 PMCID: PMC10649069 DOI: 10.3390/ijms242115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Placental membranes have been widely studied and used clinically for wound care applications, but there is limited published information on the benefits of using the chorion membrane. The chorion membrane represents a promising source of placental-derived tissue to support wound healing, with its native composition of extracellular matrix (ECM) proteins and key regulatory proteins. This study examined the impact of hypothermic storage on the structure of chorion membrane, ECM content, and response to degradation in vitro. Hypothermically stored chorion membrane (HSCM) was further characterized for its proteomic content, and for its functionality as a scaffold for cell attachment and proliferation in vitro. HSCM retained the native ECM structure, composition, and integrity of native unprocessed chorion membrane and showed no differences in response to degradation in an in vitro wound model. HSCM retained key regulatory proteins previously shown to be present in placental membranes and promoted the attachment and proliferation of fibroblasts in vitro. These data support the fact that hypothermic storage does not significantly impact the structure and characteristics of the chorion membrane compared to unprocessed tissue or its functionality as a scaffold to support tissue growth.
Collapse
|
23
|
Ingraldi AL, Audet RG, Tabor AJ. The Preparation and Clinical Efficacy of Amnion-Derived Membranes: A Review. J Funct Biomater 2023; 14:531. [PMID: 37888195 PMCID: PMC10607219 DOI: 10.3390/jfb14100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Biological tissues from various anatomical sources have been utilized for tissue transplantation and have developed into an important source of extracellular scaffolding material for regenerative medicine applications. Tissue scaffolds ideally integrate with host tissue and provide a homeostatic environment for cellular infiltration, growth, differentiation, and tissue resolution. The human amniotic membrane is considered an important source of scaffolding material due to its 3D structural architecture and function and as a source of growth factors and cytokines. This tissue source has been widely studied and used in various areas of tissue repair including intraoral reconstruction, corneal repair, tendon repair, microvascular reconstruction, nerve procedures, burns, and chronic wound treatment. The production of amniotic membrane allografts has not been standardized, resulting in a wide array of amniotic membrane products, including single, dual, and tri-layered products, such as amnion, chorion, amnion-chorion, amnion-amnion, and amnion-chorion-amnion allografts. Since these allografts are not processed using the same methods, they do not necessarily produce the same clinical responses. The aim of this review is to highlight the properties of different human allograft membranes, present the different processing and preservation methods, and discuss their use in tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Alison L. Ingraldi
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Robert G. Audet
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron J. Tabor
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Clinical Operations, Axolotl Biologix, Flagstaff, AZ 86001, USA
| |
Collapse
|
24
|
Fenelon M, Galvez P, Kalbermatten D, Scolozzi P, Madduri S. Emerging Strategies for the Biofabrication of Multilayer Composite Amniotic Membranes for Biomedical Applications. Int J Mol Sci 2023; 24:14424. [PMID: 37833872 PMCID: PMC10572287 DOI: 10.3390/ijms241914424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The amniotic membrane (AM) is the innermost part of the fetal placenta, which surrounds and protects the fetus. Due to its structural components (stem cells, growth factors, and proteins), AMs display unique biological properties and are a widely available and cost-effective tissue. As a result, AMs have been used for a century as a natural biocompatible dressing for healing corneal and skin wounds. To further increase its properties and expand its applications, advanced hybrid materials based on AMs have recently been developed. One existing approach is to combine the AM with a secondary material to create composite membranes. This review highlights the increasing development of new multilayer composite-based AMs in recent years and focuses on the benefits of additive manufacturing technologies and electrospinning, the most commonly used strategy, in expanding their use for tissue engineering and clinical applications. The use of AMs and multilayer composite-based AMs in the context of nerve regeneration is particularly emphasized and other tissue engineering applications are also discussed. This review highlights that these electrospun multilayered composite membranes were mainly created using decellularized or de-epithelialized AMs, with both synthetic and natural polymers used as secondary materials. Finally, some suggestions are provided to further enhance the biological and mechanical properties of these composite membranes.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Paul Galvez
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Daniel Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Paolo Scolozzi
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
25
|
Hofmann N, Rennekampff HO, Salz AK, Börgel M. Preparation of human amniotic membrane for transplantation in different application areas. FRONTIERS IN TRANSPLANTATION 2023; 2:1152068. [PMID: 38993896 PMCID: PMC11235369 DOI: 10.3389/frtra.2023.1152068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2024]
Abstract
The human amniotic membrane (hAM) is the inner layer of the placenta and plays protective and nutritional roles for the fetus during pregnancy. It contains multiple growth factors and proteins that mediate unique regenerative properties and enhance wound healing in tissue regeneration. Due to these characteristics hAM has been successfully utilized in ophthalmology for many decades. This material has also found application in a variety of additional therapeutic areas. Particularly noteworthy are the extraordinary effects in the healing of chronic wounds and in the treatment of burns. But hAM has also been used successfully in gynecology, oral medicine, and plastic surgery and as a scaffold for in vitro cell culture approaches. This review aims to summarize the different graft preparation, preservation and storage techniques that are used and to present advantages and disadvantages of these methods. It shows the characteristics of the hAM according to the processing and storage methods used. The paper provides an overview of the currently mainly used application areas and raises new application possibilities. In addition, further preparation types like extracts, homogenates, and the resulting treatment alternatives are described.
Collapse
Affiliation(s)
- Nicola Hofmann
- German Society for Tissue Transplantation (DGFG) gGmbH, Hannover, Germany
| | - Hans-Oliver Rennekampff
- Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie, Rhein-Maas Klinikum GmbH, Würselen, Germany
| | | | - Martin Börgel
- German Society for Tissue Transplantation (DGFG) gGmbH, Hannover, Germany
| |
Collapse
|