1
|
Wang Y, Shen H, Li Z, Liao S, Yin B, Yue R, Guan G, Chen B, Song G. Enhancing Fractionated Cancer Therapy: A Triple-Anthracene Photosensitizer Unleashes Long-Persistent Photodynamic and Luminous Efficacy. J Am Chem Soc 2024; 146:6252-6265. [PMID: 38377559 DOI: 10.1021/jacs.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hengxin Shen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Renye Yue
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guoqiang Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baode Chen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
Guo JX, Gao XM, Gu TY, Li HZ, Chen LJ, Zhao X, Yan XP. Porphyrin-anthracene covalent organic frameworks for sustainable photosterilization. J Mater Chem B 2023; 11:11094-11102. [PMID: 37987617 DOI: 10.1039/d3tb02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in enhanced phototherapy. However, COFs that can sustainably play a role in phototherapy without continuous irradiation are extremely scarce. Herein, we report the fabrication of porphyrin-anthracene multifunctional COFs (Por-DPA) for sustainable photosterilization and bacterial-infected wound healing. A porphyrin photosensitizer, as one of the monomers, was used to provide photothermal and photodynamic activities under irradiation. An anthracene derivative, a good chemical source of singlet oxygen (1O2), was selected as another monomer to capture 1O2 and release it continuously via cycloreversion in the dark. The prepared Por-DPA COF prevents the self-aggregation quenching of the photosensitizer and thermal damage caused by continuous exposure to external light sources. Besides, Por-DPA exhibits good photothermal conversion performance and efficient 1O2 production capacity through dual pathways of photosensitization and cycloreversion. The developed sustainable photosterilization platform not only has good bactericidal effects on Escherichia coli and Staphylococcus aureus, but also promotes wound healing without obvious side effects, and is expected to be a novel efficient bactericide.
Collapse
Affiliation(s)
- Jing-Xuan Guo
- Dongjiu Campus, Jiangnan University Yixing Graduate School, China
| | - Xue-Mei Gao
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tian-Yue Gu
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao-Ze Li
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Zou J, Zhang F, Fan W, Li L, Yang Z. Editorial: Synthesis of novel photosensitizers for cancer theranostics. Front Chem 2023; 11:1188243. [PMID: 37492526 PMCID: PMC10364599 DOI: 10.3389/fchem.2023.1188243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zhen Yang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, China
| |
Collapse
|