1
|
Li D, Cai Y, Guo J, Liu Y, Lu F, Li Q, Liu Y, Li Y. Screening signal peptidase based on split-GFP assembly technology to promote the secretion of alkaline protease AprE in Bacillus amyloliquefaciens. Int J Biol Macromol 2024; 269:132166. [PMID: 38723822 DOI: 10.1016/j.ijbiomac.2024.132166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Improving the ability of bacteria to secrete protein is essential for large-scale production of food enzymes. However, due to the lack of effective tracking technology for target proteins, the optimization of the secretory system is facing many problems. In this study, we utilized the split-GFP system to achieve self-assembly into mature GFP in Bacillus amyloliquefaciens and successfully tracked the alkaline protease AprE. The split-GFP system was employed to assess the signal peptidases, a crucial component in the secretory system, and signal peptidase sipA was identified as playing a role in the secretion of AprE. Deletion of sipA resulted in a higher accumulation of the precursor protein of AprE compared to other signal peptidase deletion strains. To explore the mechanism of signal peptidase on signal peptide, molecular docking and calculation of free energy were performed. The action strength of the signal peptidase is determined by its binding affinity with the tripeptides at the C-terminal of the signal peptide. The functions of signal peptides YdbK and NucB rely on sipA, and overexpression of sipA by integrating it into genome of B. amyloliquefaciens increased the activity of extracellular AprE by 19.9 %. These findings provide insights into enhancing the secretion efficiency of chassis strains.
Collapse
Affiliation(s)
- Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yian Cai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiejie Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yexue Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Chen J, Lu Y, Liu L, Bai R, Zhang S, Hao Y, Xu F, Wei B, Zhao H. Characteristic analysis and fermentation optimization of a novel Aureobasidium pullulans RM1603 with high pullulan yield. J Biosci Bioeng 2024; 137:335-343. [PMID: 38413318 DOI: 10.1016/j.jbiosc.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/29/2024]
Abstract
A high-yielding microbial polysaccharide-producing strain, named RM1603, was isolated from rhizosphere soil and identified by morphological and phylogenetic analysis. The extracellular polysaccharides (EPS) were identified by thin-layer chromatography and infrared spectroscopy. The fermentation conditions were optimized by single factor experiments in shake flasks and a 5-L fermentor. The results of morphological and phylogenetic tree analysis showed that RM1603 was a strain of Aureobasidium pullulans. Its microbial polysaccharide was identified as pullulan, and the EPS production capacity reached 33.07 ± 1.03 g L-1 in shake flasks. The fermentation conditions were optimized in a 5-L fermentor, and were found to encompass an initial pH of 6.5, aeration rate of 2 vvm, rotor speed of 600 rpm, and inoculum size of 2 %. Under these conditions, the pullulan yield of RM1603 reached 62.52 ± 0.24 g L-1. Thus, this study contributes RM1603 as a new isolation with high-yielding pullulan and potential application value in biotechnology.
Collapse
Affiliation(s)
- Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ye Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Liu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yaqiao Hao
- The Research Institute for Cordyceps Militaris with Functional Value of Industrial Technology Research Academy of Liaoning Province, Shenyang 110034, China
| | - Fangxu Xu
- The Research Institute for Cordyceps Militaris with Functional Value of Industrial Technology Research Academy of Liaoning Province, Shenyang 110034, China; Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China
| | - Buyun Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
3
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Zhang J, Lu F, Li M. Identification and investigation of the effects of N-acetylmuramoyl-L-alanine amidase in Bacillus amyloliquefaciens for the cell lysis and heterologous protein production. Int J Biol Macromol 2024; 256:128468. [PMID: 38035962 DOI: 10.1016/j.ijbiomac.2023.128468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Bacillus amyloliquefaciens (BA) is considered as an important industrial strain for heterologous proteins production. However, its severe autolytic behavior leads to reduce the industrial production capacity of the chassis cells. In this study, we aimed to evaluate the autolysis of N-acetylmuranyl-L-alanine amidase in BA TCCC11018, and further slowed down the cell lysis for improved the heterologous protein production by a series of modifications. Firstly, we identified six N-acetylmuramic acid-L-alanines by bioinformatics, and analyzed the transcriptional levels at different culture time points by transcriptome and quantitative real-time PCR. Then, by establishing an efficient CRISPR-nCas9 gene editing method, N-acetylmuramic acid-L-alanine genes were knocked out or overexpressed to verify its effect on cell lysis. Then, by single or tandem knockout N-acetylmuramic acid-L-alanines, it was determined that the reasonable modification of LytH and CwlC1 can slow down cell lysis. After 48 h of culture, the autolysis rate of the mutant strain BA ΔlytH-cwlC1 decreased by 4.83 %, and the amylase activity reached 176 U/mL, which was 76.04 % higher than that of the control strain BA Δupp. The results provide a reference for mining the functional characteristics of autolysin in Bacillus spp., and provide from this study reveal valuable insights delaying the cell lysis and increasing heterologous proteins production.
Collapse
Affiliation(s)
- Jinfang Zhang
- College of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Mei Li
- College of Life Sciences, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
5
|
Li D, Guo J, Zhang Z, Liu Y, Lu F, Li Q, Liu Y, Li Y. Sequence composition and location of CRE motifs affect the binding ability of CcpA protein. Int J Biol Macromol 2023; 253:126407. [PMID: 37634771 DOI: 10.1016/j.ijbiomac.2023.126407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacillus catabolite control protein (CcpA) mediates carbon catabolite repression (CCR) by binding with catabolite response elements (CREs) of genes or operons. Although numerous CREs had been predicted and identified, the influence of the changes in sequence and structure of CREs on recognition and binding for CcpA has yet to be unclear. This study aimed at revealing how CcpA could bind such diverse sites and focused on the analysis of multiple mutants of the CRE motif derived from the α-amylase promoter. Molecular docking and free energy calculation insights into the binding ability between the CRE sequences composition and CcpA protein. Disruption of conserved nucleotides in the CRE motifs, as well as altering the symmetric structure of the CRE sequences and the relative position of the displaced CRE motifs near the transcription start site contribute to some extent to weakening the strength of CcpA - dependent regulation. These main factors contribute to the understanding of the subtle changes in CRE motifs leading to differential regulatory effects of CcpA. Finally, an engineered promoter with a high level of transcription was obtained, and elevated extracellular enzyme activity was achieved in the expression system of Bacillus amyloliquefaciens, including alkaline protease, keratinase, aminopeptidase and acid-stable alpha amylase. The study also provides a reference for the application of other promoters with CRE motifts.
Collapse
Affiliation(s)
- Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China
| | - Jiejie Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China
| | - Zhiqiang Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China.
| | - Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China.
| | - Yexue Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, PR China.
| |
Collapse
|
6
|
Zalila-Kolsi I, Ben-Mahmoud A, Al-Barazie R. Bacillus amyloliquefaciens: Harnessing Its Potential for Industrial, Medical, and Agricultural Applications-A Comprehensive Review. Microorganisms 2023; 11:2215. [PMID: 37764059 PMCID: PMC10536829 DOI: 10.3390/microorganisms11092215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillus amyloliquefaciens, a Gram-positive bacterium, has emerged as a versatile microorganism with significant applications in various fields, including industry, medicine, and agriculture. This comprehensive review aims to provide an in-depth understanding of the characteristics, genetic tools, and metabolic capabilities of B. amyloliquefaciens, while highlighting its potential as a chassis cell for synthetic biology, metabolic engineering, and protein expression. We discuss the bacterium's role in the production of chemicals, enzymes, and other industrial bioproducts, as well as its applications in medicine, such as combating infectious diseases and promoting gut health. In agriculture, B. amyloliquefaciens has demonstrated potential as a biofertilizer, biocontrol agent, and stress tolerance enhancer for various crops. Despite its numerous promising applications, B. amyloliquefaciens remains less studied than its Gram-negative counterpart, Escherichia coli. This review emphasizes the need for further research and development of advanced engineering techniques and genetic editing technologies tailored for B. amyloliquefaciens, ultimately unlocking its full potential in scientific and industrial contexts.
Collapse
Affiliation(s)
- Imen Zalila-Kolsi
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates;
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| | - Ray Al-Barazie
- Faculty of Medical and Health Sciences, Liwa College, Abu Dhabi P.O. Box 41009, United Arab Emirates;
| |
Collapse
|
7
|
Wen Y, Qiang J, Zhou G, Zhang X, Wang L, Shi Y. Characterization of redox and salinity-tolerant alkaline protease from Bacillus halotolerans strain DS5. Front Microbiol 2022; 13:935072. [PMID: 36060753 PMCID: PMC9434114 DOI: 10.3389/fmicb.2022.935072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus halotolerans DS5 was isolated and identified as a halophilic microbe according to 16S rRNA analysis and the physical and chemical indices of the strain. A new alkaline protease (designated as prot DS5) from Bacillus halotolerans DS5 was produced, purified, and characterized. After 12 h incubation in the medium with 1% dextrin, 0.5% NaCl, 2% soluble starch, and 1% yeast extract (pH 7.0), it could reach the maximum enzyme activity (279.74 U/ml). The prot DS5 was stable in the pH range of 6.0–12.0 and the temperature range of 40–60°C, with maximal hydrolytic activities at pH 9 and at 50°C. In the presence of Ca2+, Mn2+, Ba2+, Mg2+, and Fe3+, protease activity was enhanced. The prot DS5 was maintained highly stable in NaCl (up to 2.5 mol/L), reducing and oxidizing agents. The prot DS5 also exhibited compatibility in other detergent ingredients, such as non-ionic and anionic surfactants. These properties of prot DS5 make this enzyme suitable for various industrial applications (e.g., detergents and leather).
Collapse
|