1
|
Rayfield AC, Wu T, Rifkin JA, Meaney DF. Individualized mouse brain network models produce asymmetric patterns of functional connectivity after simulated traumatic injury. Netw Neurosci 2025; 9:326-351. [PMID: 40161980 PMCID: PMC11949614 DOI: 10.1162/netn_a_00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025] Open
Abstract
The functional and cognitive effects of traumatic brain injury (TBI) are poorly understood, as even mild injuries (concussion) can lead to long-lasting, untreatable symptoms. Simplified brain dynamics models may help researchers better understand the relationship between brain injury patterns and functional outcomes. Properly developed, these computational models provide an approach to investigate the effects of both computational and in vivo injury on simulated dynamics and cognitive function, respectively, for model organisms. In this study, we apply the Kuramoto model and an existing mesoscale mouse brain structural network to develop a simplified computational model of mouse brain dynamics. We explore how to optimize our initial model to predict existing mouse brain functional connectivity collected from mice under various anesthetic protocols. Finally, to determine how strongly the changes in our optimized models' dynamics can predict the extent of a brain injury, we investigate how our simulations respond to varying levels of structural network damage. Results predict a mixture of hypo- and hyperconnectivity after experimental TBI, similar to results in TBI survivors, and also suggest a compensatory remodeling of connections that may have an impact on functional outcomes after TBI.
Collapse
Affiliation(s)
- Adam C. Rayfield
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| | - Taotao Wu
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
- University of Georgia School of Chemical, Material, and Biomedical Engineering
| | - Jared A. Rifkin
- University of Virginia Department of Mechanical and Aerospace Engineering
| | - David F. Meaney
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| |
Collapse
|
2
|
Wu T, Rifkin JA, Rayfield AC, Anderson ED, Panzer MB, Meaney DF. Concussion Prone Scenarios: A Multi-Dimensional Exploration in Impact Directions, Brain Morphology, and Network Architectures Using Computational Models. Ann Biomed Eng 2022; 50:1423-1436. [PMID: 36125606 DOI: 10.1007/s10439-022-03085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
While individual susceptibility to traumatic brain injury (TBI) has been speculated, past work does not provide an analysis considering how physical features of an individual's brain (e.g., brain size, shape), impact direction, and brain network features can holistically contribute to the risk of suffering a TBI from an impact. This work investigated each of these features simultaneously using computational modeling and analyses of simulated functional connectivity. Unlike the past studies that assess the severity of TBI based on the quantification of brain tissue damage (e.g., principal strain), we approached the brain as a complex network in which neuronal oscillations orchestrate to produce normal brain function (estimated by functional connectivity) and, to this end, both the anatomical damage location and its topological characteristics within the brain network contribute to the severity of brain function disruption and injury. To represent the variations in the population, we analyzed a publicly available database of brain imaging data and selected five distinct network architectures, seven different brain sizes, and three uniaxial head rotational conditions to study the consequences of 74 virtual impact scenarios. Results show impact direction produces the most significant change in connections across brain areas (structural connectome) and the functional coupling of activity across these brain areas (functional connectivity). Axial rotations were more injurious than those with sagittal and coronal rotations when the head kinematics were the same for each condition. When the impact direction was held constant, brain network architecture showed a significantly different vulnerability across axial and sagittal, but not coronal rotations. As expected, brain size significantly affected the expected change in structural and functional connectivity after impact. Together, these results provided groupings of predicted vulnerability to impact-a subgroup of male brain architectures exposed to axial impacts were most vulnerable, while a subgroup of female brain architectures was the most tolerant to the sagittal impacts studied. These findings lay essential groundwork for subject-specific analyses of concussion and provide invaluable guidance for designing personalized protection equipment.
Collapse
Affiliation(s)
- Taotao Wu
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Jared A Rifkin
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Adam C Rayfield
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Matthew B Panzer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA, 19104, USA. .,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|