1
|
Moreira MJ, Pintado M, Almeida JMMMD. Are Aptamer-Based Biosensors the Future of the Detection of the Human Gut Microbiome?-A Systematic Review and Meta-Analysis. BIOSENSORS 2024; 14:423. [PMID: 39329798 PMCID: PMC11430143 DOI: 10.3390/bios14090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
The gut microbiome is shaped early in life by dietary and lifestyle factors. Specific compounds in the gut affect the growth of different bacterial species and the production of beneficial or harmful byproducts. Dysbiosis of the gut microbiome has been linked to various diseases resulting from the presence of harmful bacteria and their byproducts. Existing methods for detecting microbial species, such as microscopic observation and molecular biological techniques, are costly, labor-intensive, and require skilled personnel. Biosensors, which integrate a recognition element, transducer, amplifier, signal processor, and display unit, can convert biological events into electronic signals. This review provides a comprehensive and systematic survey of scientific publications from 2018 to June 2024, obtained from ScienceDirect, PubMed, and Scopus databases. The aim was to evaluate the current state-of-the-art and identify knowledge gaps in the application of aptamer biosensors for the determination of gut microbiota. A total of 13 eligible publications were categorized based on the type of study: those using microbial bioreceptors (category 1) and those using aptamer bioreceptors (category 2) for the determination of gut microbiota. Point-of-care biosensors are being developed to monitor changes in metabolites that may lead to disease. They are well-suited for use in the healthcare system and offer an excellent alternative to traditional methods. Aptamers are gaining attention due to their stability, specificity, scalability, reproducibility, low production cost, and low immunogenicity. While there is limited research on using aptamers to detect human gut microbiota, they show promise for providing accurate, robust, and cost-effective diagnostic methods for monitoring the gut microbiome.
Collapse
Affiliation(s)
- Maria João Moreira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.M.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.M.); (M.P.)
| | - José M. M. M. De Almeida
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, University of Porto, 4169-007 Porto, Portugal
- Department of Physics, School of Sciences and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
2
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
3
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Lebovich M, Lora MA, Gracia-David J, Andrews LB. Genetic Circuits for Feedback Control of Gamma-Aminobutyric Acid Biosynthesis in Probiotic Escherichia coli Nissle 1917. Metabolites 2024; 14:44. [PMID: 38248847 PMCID: PMC10819706 DOI: 10.3390/metabo14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Engineered microorganisms such as the probiotic strain Escherichia coli Nissle 1917 (EcN) offer a strategy to sense and modulate the concentration of metabolites or therapeutics in the gastrointestinal tract. Here, we present an approach to regulate the production of the depression-associated metabolite gamma-aminobutyric acid (GABA) in EcN using genetic circuits that implement negative feedback. We engineered EcN to produce GABA by overexpressing glutamate decarboxylase and applied an intracellular GABA biosensor to identify growth conditions that improve GABA biosynthesis. We next employed characterized genetically encoded NOT gates to construct genetic circuits with layered feedback to control the rate of GABA biosynthesis and the concentration of GABA produced. Looking ahead, this approach may be utilized to design feedback control of microbial metabolite biosynthesis to achieve designable smart microbes that act as living therapeutics.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Marcos A. Lora
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jared Gracia-David
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Lebovich M, Zeng M, Andrews LB. Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium. ACS Synth Biol 2023; 12:2632-2649. [PMID: 37581922 PMCID: PMC10510703 DOI: 10.1021/acssynbio.3c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/16/2023]
Abstract
Through the implementation of designable genetic circuits, engineered probiotic microorganisms could be used as noninvasive diagnostic tools for the gastrointestinal tract. For these living cells to report detected biomarkers or signals after exiting the gut, the genetic circuits must be able to record these signals by using genetically encoded memory. Complex memory register circuits could enable multiplex interrogation of biomarkers and signals. A theory-based approach to create genetic circuits containing memory, known as sequential logic circuits, was previously established for a model laboratory strain of Escherichia coli, yet how circuit component performance varies for nonmodel and clinically relevant bacterial strains is poorly understood. Here, we develop a scalable computational approach to design robust sequential logic circuits in probiotic strain Escherichia coli Nissle 1917 (EcN). In this work, we used TetR-family transcriptional repressors to build genetic logic gates that can be composed into sequential logic circuits, along with a set of engineered sensors relevant for use in the gut environment. Using standard methods, 16 genetic NOT gates and nine sensors were experimentally characterized in EcN. These data were used to design and predict the performance of circuit designs. We present a set of genetic circuits encoding both combinational logic and sequential logic and show that the circuit outputs are in close agreement with our quantitative predictions from the design algorithm. Furthermore, we demonstrate an analog-like concentration recording circuit that detects and reports three input concentration ranges of a biochemical signal using sequential logic.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Amrofell MB, Moon TS. Characterizing a Propionate Sensor in E. coli Nissle 1917. ACS Synth Biol 2023; 12:1868-1873. [PMID: 37220256 PMCID: PMC10865894 DOI: 10.1021/acssynbio.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Short-chain fatty acids (SCFAs) are commonly found in the large intestine, but generally not in the small intestine, and influence microbiome composition and host physiology. Thus, synthetic biologists are interested in developing engineered probiotics capable of in situ detection of SCFAs as biogeography or disease sensors. One SCFA, propionate, is both sensed and consumed by E. coli. Here, we utilize the E. coli transcription factor PrpR, sensitive to the propionate-derived metabolite (2S,3S)-2-methylcitrate, and its cognate promoter PprpBCDE to detect extracellular propionate with the probiotic chassis bacterium E. coli Nissle 1917. We identify that PrpR-PprpBCDE displays stationary phase leakiness and transient bimodality, and we explain these observations through evolutionary rationales and deterministic modeling, respectively. Our results will help researchers build biogeographically sensitive genetic circuits.
Collapse
Affiliation(s)
- Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Lous, MO, USA 63130
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Lous, MO, USA 63130
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|