1
|
Wang C, Wu S. Hybrid cell membranes camouflage liposomes containing payloads to improve breast cancer chemo and photodynamic therapy. Biomater Sci 2024; 12:4980-4992. [PMID: 39169828 DOI: 10.1039/d4bm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The treatment of unresectable locally advanced triple-negative breast cancer (TNBC) and TNBC with metastasis is challenging. Many anticancer drugs, such as doxorubicin, still hinder positive therapeutic outcomes due to severe side effects. Photodynamic therapy (PDT) has an anticancer effect, and combining PDT with chemotherapy may improve breast cancer therapy. The use of cargo-loaded biomimetic PEGylated liposomes for cancer therapy may enhance efficacy and reduce side effects. In this study, liposomes were formulated to accommodate doxorubicin (Dox) and IR780. Breast cancer cells (4T1 cells) and macrophage cell membranes were isolated and camouflaged onto the PEGylated liposomes, creating a new biomimetic platform called Dox-IR780@Lip@Ms. The Dox-IR780@Lip@Ms platform was characterized and tested in vitro and in vivo. The results showed that the Dox-IR780@Lip@Ms had an ovoid shape with a double lamina structure, monodispersity, and uniform distribution. The size was 132.37 ± 1.22 nm, the PDI was 0.044 ± 0.067, and the zeta potential was -9.67 ± 1.08 mV. The encapsulation efficiency of Dox and IR780 in Dox-IR780@Lip@Ms was 89.36% ± 3.07% and 92.34% ± 0.66%, respectively. The release rate of Dox from Dox-IR780@Lip@Ms was good after laser irradiation. At pH 7.4, the release rate of Dox was 23.85% ± 0.62% at 3 h without laser irradiation and 36.62% ± 1.32% at 3.5 h with laser irradiation. At pH 6.5, the release rate of Dox was 32.54% ± 0.32% at 3 h without laser irradiation and 62.79% ± 2.15% at 3.5 h with laser irradiation. The cytotoxicity of IR780@Lip@Ms was lower than that of Dox-IR780@Lip@Ms. The cell uptake and generation of reactive oxygen species of Dox-IR780@Lip@Ms were significant. Dox-IR780@Lip@Ms exhibited immune escaping ability in vitro, homotypic targeting ability to cancer cells, high capability to kill cancer cells after laser irradiation, minimal cardiotoxicity, increased accumulation of Dox and IR780 in the tumor, and an increased anticancer effect in a tumor-bearing animal model. In conclusion, hybrid cell membranes of breast cancer and macrophages camouflaging PEGylated liposomes loaded with Dox and IR780 can significantly improve breast cancer therapy after laser irradiation in murine models.
Collapse
Affiliation(s)
- Chengfang Wang
- The First Affiliated Hospital of Hainan Medical University, Department of Ultrasound, Haikou, Hainan, China.
| | - Size Wu
- The First Affiliated Hospital of Hainan Medical University, Department of Ultrasound, Haikou, Hainan, China.
| |
Collapse
|
2
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
3
|
Jia Y, Zhang L, Xu J, Xiang L. Recent advances in cell membrane camouflaged nanotherapeutics for the treatment of bacterial infection. Biomed Mater 2024; 19:042006. [PMID: 38697197 DOI: 10.1088/1748-605x/ad46d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.
Collapse
Affiliation(s)
- Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. NANOSCALE 2024; 16:8708-8738. [PMID: 38634521 DOI: 10.1039/d4nr00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.
Collapse
Affiliation(s)
- Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
López-Estévez AM, Lapuhs P, Pineiro-Alonso L, Alonso MJ. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309355. [PMID: 38104275 DOI: 10.1002/adma.202309355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The success of personalized medicine in oncology relies on using highly effective and precise therapeutic modalities such as small interfering RNA (siRNA) and monoclonal antibodies (mAbs). Unfortunately, the clinical exploitation of these biological drugs has encountered obstacles in overcoming intricate biological barriers. Drug delivery technologies represent a plausible strategy to overcome such barriers, ultimately facilitating the access to intracellular domains. Here, an overview of the current landscape on how nanotechnology has dealt with protein corona phenomena as a first and determinant biological barrier is presented. This continues with the analysis of strategies facilitating access to the tumor, along with conceivable methods for enhanced tumor penetration. As a final step, the cellular barriers that nanocarriers must confront in order for their biological cargo to reach their target are deeply analyzed. This review concludes with a critical analysis and future perspectives of the translational advances in personalized oncological nanomedicine.
Collapse
Affiliation(s)
- Ana María López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Laura Pineiro-Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
6
|
Şen Ö, Emanet M, Mazzuferi M, Bartolucci M, Catalano F, Prato M, Moscato S, Marino A, De Pasquale D, Pugliese G, Bonaccorso F, Pellegrini V, Castillo AEDR, Petretto A, Ciofani G. Microglia Polarization and Antiglioma Effects Fostered by Dual Cell Membrane-Coated Doxorubicin-Loaded Hexagonal Boron Nitride Nanoflakes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58260-58273. [PMID: 38051559 PMCID: PMC10739601 DOI: 10.1021/acsami.3c17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.
Collapse
Affiliation(s)
- Özlem Şen
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Melis Emanet
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Martina Mazzuferi
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
- Department
of Mechanical & Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Martina Bartolucci
- Core
Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Stefania Moscato
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Attilio Marino
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Giammarino Pugliese
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Francesco Bonaccorso
- BeDimensional
SPA, Lungotorrente Secca
30R, Genova 16163, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Vittorio Pellegrini
- BeDimensional
SPA, Lungotorrente Secca
30R, Genova 16163, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | | | - Andrea Petretto
- Core
Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| |
Collapse
|
7
|
Liu Z, Xie H, Wang T. Erythrocyte-Cancer Hybrid Membrane-Camouflaged Prussian Blue Nanoparticles with Enhanced Photothermal Therapy in Tumors. ACS OMEGA 2023; 8:23056-23066. [PMID: 37396272 PMCID: PMC10308386 DOI: 10.1021/acsomega.3c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023]
Abstract
Prussian blue (PB) nanoparticles have been widely used in photothermal therapy research due to the efficient photothermal conversion ability. In this study, PB was modified with a bionic coating using a hybrid membrane of red blood cell membranes and tumor cell membranes to prepare bionic photothermal nanoparticles (PB/RHM), which can further improve the blood circulation ability and tumor targeting of the nanoparticles to achieve efficient photothermal therapy for tumor treatment. In vitro formulation characterization showed that PB/RHM was a monodisperse spherical core-shell structured nanoparticle with a diameter of 207.2 nm and effectively retained the cell membrane proteins. The in vivo biological evaluation results showed that PB/RHM could effectively accumulate into the tumor tissue, inducing a rapid temperature increase in the tumor site to 50.9 °C within 10 min, inhibiting tumor growth efficiently with a tumor inhibition rate of 93.56% and with good therapeutic safety. In summary, this paper provided a hybrid film-modified Prussian blue nanoparticle with efficient photothermal anti-tumor capacity and safety.
Collapse
Affiliation(s)
- Zhining Liu
- Ultrasound
Department, First Affiliated Hospital of
Jinzhou Medical University, Jinzhou 121001, China
| | - Huichao Xie
- College
of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianyi Wang
- Ultrasound
Department, First Affiliated Hospital of
Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
8
|
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci 2023; 24:ijms24032643. [PMID: 36768966 PMCID: PMC9916501 DOI: 10.3390/ijms24032643] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.
Collapse
Affiliation(s)
- Shile Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yanyu Chen
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
9
|
Wu Y, Wan S, Yang S, Hu H, Zhang C, Lai J, Zhou J, Chen W, Tang X, Luo J, Zhou X, Yu L, Wang L, Wu A, Fan Q, Wu J. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment. J Nanobiotechnology 2022; 20:542. [PMID: 36575429 PMCID: PMC9794113 DOI: 10.1186/s12951-022-01746-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Synthetic nanoparticles with surface bioconjugation are promising platforms for targeted therapy, but their simple biological functionalization is still a challenging task against the complex intercellular environment. Once synthetic nanoparticles enter the body, they are phagocytosed by immune cells by the immune system. Recently, the cell membrane camouflage strategy has emerged as a novel therapeutic tactic to overcome these issues by utilizing the fundamental properties of natural cells. Macrophage, a type of immune system cells, plays critical roles in various diseases, including cancer, atherosclerosis, rheumatoid arthritis, infection and inflammation, due to the recognition and engulfment function of removing substances and pathogens. Macrophage membranes inherit the surface protein profiles and biointerfacing properties of source cells. Therefore, the macrophage membrane cloaking can protect synthetic nanoparticles from phagocytosis by the immune cells. Meanwhile, the macrophage membrane can make use of the natural correspondence to accurately recognize antigens and target inflamed tissue or tumor sites. In this review, we have summarized the advances in the fabrication, characterization and homing capacity of macrophage membrane cloaking nanoparticles in various diseases, including cancers, immune diseases, cardiovascular diseases, central nervous system diseases, and microbial infections. Although macrophage membrane-camouflaged nanoparticles are currently in the fetal stage of development, there is huge potential and challenge to explore the conversion mode in the clinic.
Collapse
Affiliation(s)
- Yuesong Wu
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Shengli Wan
- grid.488387.8Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China ,grid.7132.70000 0000 9039 7662Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Shuo Yang
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Haiyang Hu
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China ,grid.411304.30000 0001 0376 205XDepartment of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Chunxiang Zhang
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jia Lai
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiahan Zhou
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Wang Chen
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Xiaoqin Tang
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiesi Luo
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Xiaogang Zhou
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Lu Yu
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Long Wang
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Anguo Wu
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Qingze Fan
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China ,grid.488387.8Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jianming Wu
- grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan China ,grid.410578.f0000 0001 1114 4286School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|