1
|
Arun G, Perumal V, Urias FPJB, Ler YE, Tan BWT, Vallabhajosyula R, Tan E, Ng O, Ng KB, Mogali SR. ChatGPT versus a customized AI chatbot (Anatbuddy) for anatomy education: A comparative pilot study. ANATOMICAL SCIENCES EDUCATION 2024; 17:1396-1405. [PMID: 39169464 DOI: 10.1002/ase.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Large Language Models (LLMs) have the potential to improve education by personalizing learning. However, ChatGPT-generated content has been criticized for sometimes producing false, biased, and/or hallucinatory information. To evaluate AI's ability to return clear and accurate anatomy information, this study generated a custom interactive and intelligent chatbot (Anatbuddy) through an Open AI Application Programming Interface (API) that enables seamless AI-driven interactions within a secured cloud infrastructure. Anatbuddy was programmed through a Retrieval Augmented Generation (RAG) method to provide context-aware responses to user queries based on a predetermined knowledge base. To compare their outputs, various queries (i.e., prompts) on thoracic anatomy (n = 18) were fed into Anatbuddy and ChatGPT 3.5. A panel comprising three experienced anatomists evaluated both tools' responses for factual accuracy, relevance, completeness, coherence, and fluency on a 5-point Likert scale. These ratings were reviewed by a third party blinded to the study, who revised and finalized scores as needed. Anatbuddy's factual accuracy (mean ± SD = 4.78/5.00 ± 0.43; median = 5.00) was rated significantly higher (U = 84, p = 0.01) than ChatGPT's accuracy (4.11 ± 0.83; median = 4.00). No statistically significant differences were detected between the chatbots for the other variables. Given ChatGPT's current content knowledge limitations, we strongly recommend the anatomy profession develop a custom AI chatbot for anatomy education utilizing a carefully curated knowledge base to ensure accuracy. Further research is needed to determine students' acceptance of custom chatbots for anatomy education and their influence on learning experiences and outcomes.
Collapse
Affiliation(s)
- Gautham Arun
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Singapore Polytechnic, Singapore, Singapore
| | - Vivek Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Yan En Ler
- Singapore Polytechnic, Singapore, Singapore
| | | | | | - Emmanuel Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Olivia Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Kian Bee Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | |
Collapse
|
2
|
Barger JB, Edwards DN. Development, implementation, and perceptions of a 3D-printed human skull in a large dental gross anatomy course. ANATOMICAL SCIENCES EDUCATION 2024; 17:1215-1228. [PMID: 38715139 DOI: 10.1002/ase.2434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 08/30/2024]
Abstract
Skull anatomy is a difficult region for anatomy students to learn and understand but is necessary for a variety of health professional students. To improve learning, a 3D-printed human skull was developed, produced, and distributed to a course of 83 dental students for use as a take-home study tool over the 10-week anatomy course. The 70% scale human skull derived from CT data had a fully articulating mandible, simulated temporomandibular joint, and accurate cranial structures. At the course end, students completed a perception survey and responses were compared with those who made a grade of A, B, or C in the course. Students overall reported using the model less than 3 h per week, but those who scored an A in the course reported using the model more frequently than those who scored a B or C. Free responses revealed that students used the model in a variety of ways, but found that the model was quick and easily accessible to check understanding while studying at home in the absence of direct observation by faculty. Overall, this study provides evidence on the feasibility of large-scale 3D printing and the benefits of the use of a 3D-printed model as a take-home study aid.
Collapse
Affiliation(s)
- J Bradley Barger
- Department of Cell, Developmental, and Integrative Biology, Birmingham Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Danielle N Edwards
- Department of Cell, Developmental, and Integrative Biology, Birmingham Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Wang J, Li W, Dun A, Zhong N, Ye Z. 3D visualization technology for Learning human anatomy among medical students and residents: a meta- and regression analysis. BMC MEDICAL EDUCATION 2024; 24:461. [PMID: 38671399 PMCID: PMC11055294 DOI: 10.1186/s12909-024-05403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND 3D visualization technology applies computers and other devices to create a realistic virtual world for individuals with various sensory experiences such as 3D vision, touch, and smell to gain a more effective understanding of the relationships between real spatial structures and organizations. The purpose of this study was to comprehensively evaluate the effectiveness of 3D visualization technology in human anatomy teaching/training and explore the potential factors that affect the training effects to better guide the teaching of classroom/laboratory anatomy. METHODS We conducted a meta-analysis of randomized controlled studies on teaching human anatomy using 3D visualization technology. We extensively searched three authoritative databases, PubMed, Web of Science, and Embase; the main outcomes were the participants' test scores and satisfaction, while the secondary outcomes were time consumption and enjoyment. Heterogeneity by I² was statistically determined because I²> 50%; therefore, a random-effects model was employed, using data processing software such as RevMan, Stata, and VOSviewer to process data, apply standardized mean difference and 95% confidence interval, and subgroup analysis to evaluate test results, and then conduct research through sensitivity analysis and meta-regression analysis. RESULTS Thirty-nine randomized controlled trials (2,959 participants) were screened and included in this study. The system analysis of the main results showed that compared with other methods, including data from all regions 3D visualization technology moderately improved test scores as well as satisfaction and enjoyment; however, the time that students took to complete the test was not significantly reduced. Meta-regression analysis also showed that regional factorsaffected test scores, whereas other factors had no significant impact. When the literature from China was excluded, the satisfaction and happiness of the 3D virtual-reality group were statistically significant compared to those of the traditional group; however, the test results and time consumption were not statistically significant. CONCLUSION 3D visualization technology is an effective way to improve learners' satisfaction with and enjoyment of human anatomical learning, but it cannot reduce the time required for testers to complete the test. 3D visualization technology may struggle to improve the testers' scores. The literature test results from China are more prone to positive results and affected by regional bias.
Collapse
Affiliation(s)
- Junming Wang
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China
- School of clinical and basic medicine, Shandong First Medical University, Jinan, China
| | - Wenjun Li
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China
- School of clinical and basic medicine, Shandong First Medical University, Jinan, China
| | - Aishe Dun
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Ning Zhong
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China.
| | - Zhen Ye
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China.
| |
Collapse
|
4
|
Cheung RCC, Yang J, Fang C, Leung MF, Bridges SM, Tipoe GL. Show them what they can't see! An evaluation of the use of customized 3D printed models in head and neck anatomy. ANATOMICAL SCIENCES EDUCATION 2024; 17:379-395. [PMID: 38095147 DOI: 10.1002/ase.2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2023]
Abstract
Difficulty in visualizing anatomical structures has been identified as a challenge in anatomy learning and the emergence of three-dimensional printed models (3DPMs) offers a potential solution. This study evaluated the effectiveness of 3DPMs for learning the arterial supply of the head and neck region. One hundred eighty-four undergraduate medical students were randomly assigned to one of four learning modalities including wet specimen, digital model, 3DPM, and textbook image. Posttest scores indicated that all four modalities supported participants' knowledge acquisition, most significantly in the wet specimen group. While the participants rated 3DPMs lower for helping correct identification of structures than wet specimens, they praised 3DPMs for their ability to demonstrate topographical relationships between the arterial supply and adjacent structures. The data further suggested that the biggest limitation of the 3DPMs was their simplicity, thus making it more difficult for users to recognize the equivalent structures on the wet specimens. It was concluded that future designs of 3DPMs will need to consider the balance between the ease of visualization of anatomical structures and the degree of complexity required for successful transfer of learning. Overall, this study presented some conflicting evidence of the favorable outcomes of 3DPMs reported in other similar studies. While effective for anatomy learning as a standalone modality, educators must identify the position 3DPM models hold relative to other modalities in the continuum of undergraduate anatomy education in order to maximize their advantages for students.
Collapse
Affiliation(s)
| | - Jian Yang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Christian Fang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Man Fai Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Susan M Bridges
- Centre for the Enhancement of Teaching and Learning, Faculty of Education, The University of Hong Kong, Hong Kong, Hong Kong
| | - George L Tipoe
- Bau Institute of Medical and Health Sciences Education, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
5
|
Brumpt E, Bertin E, Gabrion X, Coussens C, Tatu L, Louvrier A. Are 3D-printed anatomical models of the ear effective for teaching anatomy? A comparative pilot study versus cadaveric models. Surg Radiol Anat 2024; 46:103-115. [PMID: 38231228 DOI: 10.1007/s00276-023-03276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Despite the combination of chalkboard lectures and cadaveric models, the ear remains a complex anatomical structure that is difficult for medical students to grasp. The aim of this study was to evaluate the contribution of a 3D-printed ear model for educating undergraduate medical students by comparing it with a conventional cadaveric model. METHODS Models of the ear comprising the outer ear, tympanic membrane, ossicles and inner ear were modeled and then 3D-printed at 6:1 and 10:1 scales based on cadaveric dissection and CT, cone-beam CT and micro/nano CT scans. Cadaveric models included two partially dissected dry temporal bones and ossicles. Twenty-four 3rd year medical students were given separate access to cadaveric models (n = 12) or 3D-printed models (n = 12). A pre-test and two post-tests were carried out to assess knowledge (n = 24). A satisfaction questionnaire focusing solely on the 3D-printed model, comprising 17 items assessed on a 5-point Likert scale, was completed by all study participants. A 5-point Likert scale questionnaire comprising four items (realism, color, quality and satisfaction with the 3D-printed ear model) was given to three expert anatomy Professors. RESULTS The test scores on the first post-test were higher for the students who had used the 3D-printed models (p < 0.05). Overall satisfaction among the students and the experts was very high, averaging 4.7 on a 5-point Likert-type satisfaction scale. CONCLUSION This study highlights the overall pedagogical value of a 3D-printed model for learning ear anatomy.
Collapse
Affiliation(s)
- Eléonore Brumpt
- Département d'Anatomie, University Franche-Comté, UFRSanté, 19 Rue Ambroise-Paré CS 71806, 25000, Besançon, France.
- Radiologie, CHU Besançon, 25000, Besançon, France.
- Laboratoire Nano MédecineImagerieThérapeutique, University Franche-Comté, EA 4662, 25000, Besançon, France.
| | - Eugénie Bertin
- Département d'Anatomie, University Franche-Comté, UFRSanté, 19 Rue Ambroise-Paré CS 71806, 25000, Besançon, France
- Chirurgie Maxillo-FacialeStomatologie et Odontologie Hospitalière, CHU Besançon, 25000, Besançon, France
| | - Xavier Gabrion
- Département de Mécanique Appliquée, University Franche-Comté, FEMTO-ST, CNRS/UFC/ENSMM/UTBM, 25000, Besançon, France
| | - Camille Coussens
- Plateforme I3DM (Impression 3D Médicale), CHU Besançon, 25000, Besançon, France
| | - Laurent Tatu
- Département d'Anatomie, University Franche-Comté, UFRSanté, 19 Rue Ambroise-Paré CS 71806, 25000, Besançon, France
- Neurologie, CHU Besançon, 25000, Besançon, France
- Laboratoire de Neurosciences Intégratives et Cliniques, University Franche-Comté, EA 481, 25000, Besançon, France
| | - Aurélien Louvrier
- Laboratoire Nano MédecineImagerieThérapeutique, University Franche-Comté, EA 4662, 25000, Besançon, France
- Chirurgie Maxillo-FacialeStomatologie et Odontologie Hospitalière, CHU Besançon, 25000, Besançon, France
- Plateforme I3DM (Impression 3D Médicale), CHU Besançon, 25000, Besançon, France
| |
Collapse
|
6
|
Valls-Esteve A, Tejo-Otero A, Adell-Gómez N, Lustig-Gainza P, Fenollosa-Artés F, Buj-Corral I, Rubio-Palau J, Munuera J, Krauel L. Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases. Bioengineering (Basel) 2023; 11:31. [PMID: 38247908 PMCID: PMC10813349 DOI: 10.3390/bioengineering11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
The printing and manufacturing of anatomical 3D models has gained popularity in complex surgical cases for surgical planning, simulation and training, the evaluation of anatomical relations, medical device testing and patient-professional communication. 3D models provide the haptic feedback that Virtual or Augmented Reality (VR/AR) cannot provide. However, there are many technologies and strategies for the production of 3D models. Therefore, the aim of the present study is to show and compare eight different strategies for the manufacture of surgical planning and training prototypes. The eight strategies for creating complex abdominal oncological anatomical models, based on eight common pediatric oncological cases, were developed using four common technologies (stereolithography (SLA), selectie laser sinterning (SLS), fused filament fabrication (FFF) and material jetting (MJ)) along with indirect and hybrid 3D printing methods. Nine materials were selected for their properties, with the final models assessed for application suitability, production time, viscoelastic mechanical properties (shore hardness and elastic modulus) and cost. The manufacturing and post-processing of each strategy is assessed, with times ranging from 12 h (FFF) to 61 h (hybridization of FFF and SLS), as labor times differ significantly. Cost per model variation is also significant, ranging from EUR 80 (FFF) to EUR 600 (MJ). The main limitation is the mimicry of physiological properties. Viscoelastic properties and the combination of materials, colors and textures are also substantially different according to the strategy and the intended use. It was concluded that MJ is the best overall option, although its use in hospitals is limited due to its cost. Consequently, indirect 3D printing could be a solid and cheaper alternative.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Núria Adell-Gómez
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Pamela Lustig-Gainza
- Innovation Department, SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Pediatric Surgical Oncology, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, 08027 Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau—Centre CERCA, 08041 Barcelona, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08007 Barcelona, Spain
- 3D Unit (3D4H), SJD Barcelona Children’s Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology, Pediatric Surgery Department, SJD Barcelona Children’s Hospital, Universitat de Barcelona, 08950 Barcelona, Spain
| |
Collapse
|
7
|
Brumpt E, Bertin E, Tatu L, Louvrier A. 3D printing as a pedagogical tool for teaching normal human anatomy: a systematic review. BMC MEDICAL EDUCATION 2023; 23:783. [PMID: 37864193 PMCID: PMC10589929 DOI: 10.1186/s12909-023-04744-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Three-dimensional-printed anatomical models (3DPAMs) appear to be a relevant tool due to their educational value and their feasibility. The objectives of this review were to describe and analyse the methods utilised for creating 3DPAMs used in teaching human anatomy and for evaluating its pedagogical contribution. METHODS An electronic search was conducted on PubMed using the following terms: education, school, learning, teaching, learn, teach, educational, three-dimensional, 3D, 3-dimensional, printing, printed, print, anatomy, anatomical, anatomically, and anatomic. Data retrieved included study characteristics, model design, morphological evaluation, educational performance, advantages, and disadvantages. RESULTS Of the 68 articles selected, the cephalic region was the most studied (33 articles); 51 articles mentioned bone printing. In 47 articles, the 3DPAM was designed from CT scans. Five printing processes were listed. Plastic and its derivatives were used in 48 studies. The cost per design ranged from 1.25 USD to 2800 USD. Thirty-seven studies compared 3DPAM to a reference model. Thirty-three articles investigated educational performance. The main advantages were visual and haptic qualities, effectiveness for teaching, reproducibility, customizability and manipulability, time savings, integration of functional anatomy, better mental rotation ability, knowledge retention, and educator/student satisfaction. The main disadvantages were related to the design: consistency, lack of detail or transparency, overly bright colours, long printing time, and high cost. CONCLUSION This systematic review demonstrates that 3DPAMs are feasible at a low cost and effective for teaching anatomy. More realistic models require access to more expensive 3D printing technologies and substantially longer design time, which would greatly increase the overall cost. Choosing an appropriate image acquisition modality is key. From a pedagogical viewpoint, 3DPAMs are effective tools for teaching anatomy, positively impacting the learning outcomes and satisfaction level. The pedagogical effectiveness of 3DPAMs seems to be best when they reproduce complex anatomical areas, and they are used by students early in their medical studies.
Collapse
Affiliation(s)
- Eléonore Brumpt
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France.
- Radiologie, CHU de Besançon, Besançon, 25000, France.
- Laboratoire Nano Médecine, Imagerie, Thérapeutique, EA 4662, University of Franche-Comté, 16 Route de Gray, Besançon, F-25000, France.
- Anatomy Department, UFR Santé, 19 Rue Ambroise Paré, CS 71806, Besançon, F25030, France.
| | - Eugénie Bertin
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France
- Chirurgie Maxillo-Faciale, Stomatologie Et Odontologie Hospitalière, CHU de Besançon, Besançon, 25000, France
| | - Laurent Tatu
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France
- Neurologie, CHU de Besançon, Besançon, 25000, France
- Laboratoire de Neurosciences Intégratives Et Cliniques, University Franche-Comté, EA 481, Besançon, F-25000, France
| | - Aurélien Louvrier
- University of Franche-Comté, 19 rue Ambroise Paré, Besançon, 25000, France
- Chirurgie Maxillo-Faciale, Stomatologie Et Odontologie Hospitalière, CHU de Besançon, Besançon, 25000, France
- Plateforme I3DM (Impression 3D Médicale), CHU Besançon, Besançon, 25000, France
| |
Collapse
|