1
|
Choi G, Kang H, Suh JS, Lee H, Han K, Yoo G, Jo H, Shin YM, Kim TJ, Youn B. Novel Estrogen Receptor Dimerization BRET-Based Biosensors for Screening Estrogenic Endocrine-Disrupting Chemicals. Biomater Res 2024; 28:0010. [PMID: 38464469 PMCID: PMC10923609 DOI: 10.34133/bmr.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, β/β) or hetero (α/β) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17β-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.
Collapse
Affiliation(s)
- Gyuho Choi
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Gaeun Yoo
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Jo
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yeong Min Shin
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|