1
|
de Leeuw KD, van Willigen MJW, Vrauwdeunt T, Strik DPPTB. CO 2 supply is a powerful tool to control homoacetogenesis, chain elongation and solventogenesis in ethanol and carboxylate fed reactor microbiomes. Front Bioeng Biotechnol 2024; 12:1329288. [PMID: 38720876 PMCID: PMC11076876 DOI: 10.3389/fbioe.2024.1329288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Anaerobic fermentation technology enables the production of medium chain carboxylates and alcohols through microbial chain elongation. This involves steering reactor microbiomes to yield desired products, with CO2 supply playing a crucial role in controlling ethanol-based chain elongation and facilitating various bioprocesses simultaneously. In the absence of CO2 supply (Phase I), chain elongation predominantly led to n-caproate with a high selectivity of 96 Cmol%, albeit leaving approximately 80% of ethanol unconverted. During this phase, C. kluyveri and Proteiniphilum-related species dominated the reactors. In Phase II, with low CO2 input (2.0 NmL L-1 min-1), formation of n-butyrate, butanol, and hexanol was stimulated. Increasing CO2 doses in Phase III (6 NmL L-1 min-1) led to CO2 utilization via homoacetogenesis, coinciding with the enrichment of Clostridium luticellarii, a bacterium that can use CO2 as an electron acceptor. Lowering CO2 dose to 0.5 NmL L-1 min-1 led to a shift in microbiome composition, diminishing the dominance of C. luticellarii while increasing C. kluyveri abundance. Additionally, other Clostridia, Proteiniphilum, and Lactobacillus sakei-related species became prevalent. This decrease in CO2 load from 6 to 0.5 NmL L-1 min-1 minimized excessive ethanol oxidation from 30%-50% to 0%-3%, restoring a microbiome favoring net n-butyrate consumption and n-caproate production. The decreased ethanol oxidation coincided with the resurgence of hydrogen formation at partial pressures above 1%. High concentrations of butyrate, caproate, and ethanol in the reactor, along with low acetate concentration, promoted the formation of butanol and hexanol. It is evident that CO2 supply is indispensable for controlling chain elongation in an open culture and it can be harnessed to stimulate higher alcohol formation or induce CO2 utilization as an electron acceptor.
Collapse
Affiliation(s)
- Kasper D. de Leeuw
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
- ChainCraft B.V., Amsterdam, Netherlands
| | | | - Ton Vrauwdeunt
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
2
|
Miranda EM, McLaughlin CM, Reep JK, Edgar M, Landrum C, Severson C, Grubb DG, Hamdan N, Hansen S, Santisteban L, Delgado AG. High Efficacy Two-Stage Metal Treatment Incorporating Basic Oxygen Furnace Slag and Microbiological Sulfate Reduction. ACS ES&T ENGINEERING 2024; 4:433-444. [PMID: 38357246 PMCID: PMC10862489 DOI: 10.1021/acsestengg.3c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
Lignocellulosic sulfate-reducing biochemical reactors (SRBRs) can be implemented as passive treatment for mining-influenced water (MIW) mitigating the potentially deleterious effects of MIW acidic pH, and high concentrations of metal(loid)s and SO42-. In this study, a novel two-stage treatment for MIW was designed, where basic oxygen furnace slag (slag stage) and microbial SO42- reduction (SRBR stage) were incorporated in series. The SRBRs contained spent brewing grains or sugarcane bagasse as sources of lignocellulose. The slag reactor removed >99% of the metal(loid) concentration present in the MIW (130 ± 40 mg L-1) and increased MIW pH from 2.6 ± 0.2 to 12 ± 0.3. The alkaline effluent pH of the slag reactor was mitigated by remixing slag effluent with acidic MIW before SRBR treatment. The SRBR stage removed the bulk of SO42- from MIW, additional metal(loid)s, and yielded a circumneutral effluent pH. Cadmium, copper, and zinc showed high removal rates in SRBRs (≥96%) and likely precipitated as sulfide minerals. The microbial communities developed in SRBRs were enriched in hydrolytic, fermentative, and sulfate-reducing taxa. However, the SRBRs developed distinct community compositions due to the different lignocellulose sources employed. Overall, this study underscores the potential of a two-stage treatment employing steel slag and SRBRs for full-scale implementation at mining sites.
Collapse
Affiliation(s)
- Evelyn M. Miranda
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, 501 E. Tyler Mall, Tempe, Arizona 85281, United States
| | - Caleb M. McLaughlin
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Jeffrey K. Reep
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Michael Edgar
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Colton Landrum
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
| | - Carli Severson
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
| | - Dennis G. Grubb
- Jacobs
Engineering, 2001 Market
St., Suite 900, Philadelphia, Pennsylvania 19104, United States
| | - Nasser Hamdan
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| | - Shane Hansen
- Freeport-McMoRan
Inc., 800 E. Pima Mine Road, Sahuarita, Arizona 85629, United States
| | - Leonard Santisteban
- Freeport-McMoRan
Inc., 800 E. Pima Mine Road, Sahuarita, Arizona 85629, United States
| | - Anca G. Delgado
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
- Engineering
Research Center for Bio-Mediated & Bio-Inspired Geotechnics (CBBG), Arizona State University, 425 E. University Dr., Tempe, Arizona 85281, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, 660 S. College Avenue, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Tigunova O, Bratishko V, Shulga S. Apple pomace as an alternative substrate for butanol production. AMB Express 2023; 13:138. [PMID: 38055129 DOI: 10.1186/s13568-023-01649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Butanol-producing strains Clostridium sp. UCM B-7570 and C. acetobutylicum UCM B-7407 were used for research from "Collection of strains of microorganisms and plant lines for food and agricultural biotechnology" of the Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, glycerol (BASF, Germany) and apple pomace (total moisture 4%) after apple juice production. The aim of this work was to study the possibility of using apple pomace by domestic butanol-producing strains of Clostridium sp. UCM B-7570 and C. acetobutylicum UCM B-7407 as a substrate. Producers were cultured on medium with different concentrations of apple pomace, glycerol was used for the inoculation. The presence of ethanol, acetone, and butanol in the culture liquid was determined using a gas chromatograph. It was determined that a significant part of the macrocomponent composition of the extracts can be used in bioconversion by producing strains of the genus Clostridium. It was determined that the highest concentration of butanol (10 g/dm3) was at a concentration of 120 g/dm3 in the extracts. The obtained data showed the possibility of using apple pomace as a substrate in biobutanol technology.
Collapse
Affiliation(s)
- Olena Tigunova
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Laboratory of Food and Industrial Biotechnology, 2a, Baida Vyshnevetskyi Str, Kyiv, 04123, Ukraine.
| | - Viacheslav Bratishko
- National University of Life and Environmental Science of Ukraine, 15, Heroes Oborony str, Kyiv, 03041, Ukraine
| | - Sergiy Shulga
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Laboratory of Food and Industrial Biotechnology, 2a, Baida Vyshnevetskyi Str, Kyiv, 04123, Ukraine
| |
Collapse
|