1
|
Huang X, Cai Y, Chen K, Ren Q, Huang B, Wan G, Wang Y, Lin J, Zhao J. Risk factors and treatment strategies for adjacent segment disease following spinal fusion (Review). Mol Med Rep 2025; 31:33. [PMID: 39575466 PMCID: PMC11605282 DOI: 10.3892/mmr.2024.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/01/2024] Open
Abstract
Adjacent segment disease (ASD) is a significant clinical complication following cervical and lumbar spinal fusion surgery, characterized by the degeneration of spinal segments adjacent to the fused area. The present literature review aimed to elucidate the risk factors contributing to ASD and to evaluate current and emerging treatment strategies. Epidemiological data indicate that patient‑related factors such as age, pre‑existing spinal degeneration and comorbidities, along with surgical factors including the type of fusion, instrumentation and alignment correction, play pivotal roles in ASD development. Biomechanical alterations post‑fusion further exacerbate the risk. The underlying mechanisms of ASD involve changes in spinal kinematics and disc degeneration, driven by inflammatory and degenerative processes. Diagnostic modalities, such as magnetic resonance imaging and computed tomography scans, are essential for early detection and accurate diagnosis. Preventive strategies emphasize meticulous preoperative planning, advanced surgical techniques and postoperative rehabilitation. Treatment approaches range from conservative methods such as physical therapy and pharmacological interventions to surgical solutions, including revision surgeries and the use of motion‑preserving technologies. Emerging therapies, particularly in regenerative medicine, show promise in mitigating ASD. The present review underscored the necessity of a multidisciplinary approach to optimize patient outcomes and highlighted the need for ongoing research to address gaps in the current understanding of ASD in both cervical and lumbar regions.
Collapse
Affiliation(s)
- Xing Huang
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Yong Cai
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Kai Chen
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Qiang Ren
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Bo Huang
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Gang Wan
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Yuchen Wang
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Jincheng Lin
- Department of Orthopedics, Xishui County People's Hospital, Zunyi, Guizhou 564613, P.R. China
| | - Jun Zhao
- Department of Orthopedics, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
2
|
Wei X, Li H, Qiu J, Jiao J, Guo X, Yin G, Yang P, Han Y, Zhao Q, Zeng H, Rao Z, Gao X, Li K, Lai P, Zhang S, Yang C, Lu D, Bai X. Tree shrew as a new animal model for musculoskeletal disorders and aging. Bone Res 2025; 13:5. [PMID: 39746902 PMCID: PMC11697419 DOI: 10.1038/s41413-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025] Open
Abstract
Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs. Age-related spontaneous IDD in parallel with a gradual disappearance of notochordal cells were commonly observed in tree shrews upon skeletal maturity with no sex differences, while age-related osteoporotic changes including bone loss in the metaphyses were primarily presented in aged females, similar to observations in humans. Moreover, in the osteochondral defect model, tree shrew cartilage exhibited behavior similar to that of humans, characterized by a more restricted self-healing capacity compared to the rapid spontaneous healing of joint surfaces observed in rats. The induced OA model in tree shrews was highly efficient and reproducible, characterized by gradual deterioration of articular cartilage, recapitulating the human OA phenotype to some degree. Surgery-induced IDD models were successfully established in tree shrews, in which the lumbar spine instability model developed slow progressive disc degeneration with more similarity to the clinical state, whereas the needle puncture model led to the rapid development of IDD with more severe symptoms. Taken together, our findings pave the way for the development of the tree shrew as a new animal model for the study of MSDs and aging.
Collapse
Affiliation(s)
- Xiaocui Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Honghao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jingyang Qiu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Xiongtian Guo
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Gaosheng Yin
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Ping Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Qiongzhi Zhao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Zeng
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Rao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chengliang Yang
- Guangxi Key Laboratory for Biomedical Material Research, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Wu ZL, Liu Y, Song W, Zhou KS, Ling Y, Zhang HH. Role of mitophagy in intervertebral disc degeneration: A narrative review. Osteoarthritis Cartilage 2025; 33:27-41. [PMID: 39537018 DOI: 10.1016/j.joca.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE The pivotal role of mitophagy in the initiation and progression of intervertebral disc (IVD) degeneration (IDD) has become increasingly apparent due to a growing body of research on its pathogenesis. This review summarizes the role of mitophagy in IDD and the therapeutic potential of targeting this process. DESIGN This narrative review is divided into three parts: the regulatory mechanisms of mitophagy, the role of mitophagy in IDD, and the applications and prospects of mitophagy for the treatment of IDD. RESULTS Mitophagy protects cells against harmful external stimuli and plays a crucial protective role by promoting extracellular matrix (ECM) production, inhibiting ECM degradation, and reducing apoptosis, senescence, and cartilage endplate calcification. However, excessive mitophagy is often detrimental to cells. Currently, the regulatory mechanisms governing appropriate and excessive mitophagy remain unclear. CONCLUSIONS Proper mitophagy effectively maintains IVD cell homeostasis and slows the progression of IDD. Conversely, excessive mitophagy may accelerate IDD development. Further research is needed to elucidate the regulatory mechanisms underlying appropriate and excessive mitophagy, which could provide new theoretical support for the application of mitophagy targeting to the treatment of IDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yong Liu
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wei Song
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Kai-Sheng Zhou
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yan Ling
- Sports Teaching and Research Department of Lanzhou University, Lanzhou, China.
| | - Hai-Hong Zhang
- Department of Orthopedics, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; Orthopaedics Key Laboratory of Gansu Province, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China; The Cuiying Biomedical Research Center, The Second Hospital&Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Clayton SW, Sebastian A, Wilson SP, Hum NR, Walk RE, Easson GWD, Vaidya R, Broz KS, Loots GG, Tang SY. Single cell RNA sequencing reveals a shift in cell function and maturation of endogenous and infiltrating cell types in response to acute intervertebral disc injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607363. [PMID: 39149307 PMCID: PMC11326235 DOI: 10.1101/2024.08.10.607363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to irreversible cell loss and loss of IVD function. Attempts to restore IVD function through cell replacement therapies have had limited success due to knowledge gaps in critical cell populations and molecular crosstalk after injury. Here, we used single cell RNA sequencing to identify the transcriptional changes of endogenous and infiltrating IVD cell populations, as well as the potential of resident mesenchymal stem cells (MSCs) for tissue repair. Control and Injured (needle puncture) tail IVDs were extracted from 12 week old female C57BL/6 mice 7 days post injury and clustering analyses, gene ontology, and pseudotime trajectory analyses were used to determine transcriptomic divergences in the cells of the injured IVD, while immunofluorescence was utilized to determine mesenchymal stem cell (MSC) localization. Clustering analysis revealed 11 distinct cell populations that were IVD tissue specific, immune, or vascular cells. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18+ Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology of DEGs suggested that the most upregulated biological pathways were angiogenesis and T cell related while wound healing and ECM regulation categories were downregulated. Pseudotime trajectory analyses revealed that cells were driven towards increased cell differentiation due to IVD injury in all IVD tissue clusters except for Krt18+ NP which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations drifted towards more IVD differentiated cells profiles with injury and localized distinctly within the IVD. This study strengthens the understanding of heterogeneous IVD cell populations response to injury and identifies targetable MSC populations for future IVD repair studies.
Collapse
Affiliation(s)
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
| | - Remy E Walk
- Washington University in St. Louis, St. Louis MO
| | | | | | | | - Gabriela G Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Simon Y Tang
- Washington University in St. Louis, St. Louis MO
| |
Collapse
|
5
|
Xu B, Huang M, Li J, Meng Q, Hu J, Chen Q, He H, Jiang H, Han F, Meng B, Liang T. The MnO 2/GelMA Composite Hydrogels Improve the ROS Microenvironment of Annulus Fibrosus Cells by Promoting the Antioxidant and Autophagy through the SIRT1/NRF2 Pathway. Gels 2024; 10:333. [PMID: 38786250 PMCID: PMC11121468 DOI: 10.3390/gels10050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a worldwide disease that causes low back pain and reduces quality of life. Biotherapeutic strategies based on tissue engineering alternatives, such as intervertebral disc scaffolds, supplemented by drug-targeted therapy have brought new hope for IVDD. In this study, to explore the role and mechanism of MnO2/GelMA composite hydrogels in alleviating IVDD, we prepared composite hydrogels with MnO2 and methacrylate gelatin (GelMA) and characterized them using compression testing and transmission electron microscopy (TEM). Annulus fibrosus cells (AFCs) were cultured in the composite hydrogels to verify biocompatibility by live/dead and cytoskeleton staining. Cell viability assays and a reactive oxygen species (ROS) probe were used to analyze the protective effect of the composite hydrogels under oxidative damage. To explore the mechanism of improving the microenvironment, we detected the expression levels of antioxidant and autophagy-related genes and proteins by qPCR and Western blotting. We found that the MnO2/GelMA composite hydrogels exhibited excellent biocompatibility and a porous structure, which promoted cell proliferation. The addition of MnO2 nanoparticles to GelMA cleared ROS in AFCs and induced the expression of antioxidant and cellular autophagy through the common SIRT1/NRF2 pathway. Therefore, the MnO2/GelMA composite hydrogels, which can improve the disc microenvironment through scavenging intracellular ROS and resisting oxidative damage, have great application prospects in the treatment of IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bin Meng
- Medical 3D Printing Center, Orthopedic Institute, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215000, China; (B.X.); (M.H.); (J.L.); (Q.M.); (J.H.); (Q.C.); (H.H.); (H.J.); (F.H.)
| | - Ting Liang
- Medical 3D Printing Center, Orthopedic Institute, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215000, China; (B.X.); (M.H.); (J.L.); (Q.M.); (J.H.); (Q.C.); (H.H.); (H.J.); (F.H.)
| |
Collapse
|
6
|
Desai SU, Srinivasan SS, Kumbar SG, Moss IL. Hydrogel-Based Strategies for Intervertebral Disc Regeneration: Advances, Challenges and Clinical Prospects. Gels 2024; 10:62. [PMID: 38247785 PMCID: PMC10815657 DOI: 10.3390/gels10010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Millions of people worldwide suffer from low back pain and disability associated with intervertebral disc (IVD) degeneration. IVD degeneration is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and the annulus fibrosus (AF) fissures form, which often results in intervertebral disc herniation or disc space collapse and related clinical symptoms. Currently available options for treating intervertebral disc degeneration are symptoms control with therapy modalities, and/or medication, and/or surgical resection of the IVD with or without spinal fusion. As such, there is an urgent clinical demand for more effective disease-modifying treatments for this ubiquitous disorder, rather than the current paradigms focused only on symptom control. Hydrogels are unique biomaterials that have a variety of distinctive qualities, including (but not limited to) biocompatibility, highly adjustable mechanical characteristics, and most importantly, the capacity to absorb and retain water in a manner like that of native human nucleus pulposus tissue. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. In this review, we summarize the latest findings and developments in the application of hydrogel technology for the repair and regeneration of intervertebral discs.
Collapse
Affiliation(s)
- Shivam U. Desai
- Department of Orthopedic Surgery, Central Michigan University, College of Medicine, Saginaw, MI 48602, USA
| | | | | | - Isaac L. Moss
- Department of Orthopedic Surgery, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|