1
|
Ge X, Hu M, Zhou M, Fang X, Chen X, Geng D, Wang L, Yang X, An H, Zhang M, Lin D, Zheng M, Cui X, Wang Q, Wu Y, Zheng K, Huang XF, Yu Y. Overexpression of forebrain PTP1B leads to synaptic and cognitive impairments in obesity. Brain Behav Immun 2024; 117:456-470. [PMID: 38336024 DOI: 10.1016/j.bbi.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity has reached pandemic proportions and is a risk factor for neurodegenerative diseases, including Alzheimer's disease. Chronic inflammation is common in obese patients, but the mechanism between inflammation and cognitive impairment in obesity remains unclear. Accumulative evidence shows that protein-tyrosine phosphatase 1B (PTP1B), a neuroinflammatory and negative synaptic regulator, is involved in the pathogenesis of neurodegenerative processes. We investigated the causal role of PTP1B in obesity-induced cognitive impairment and the beneficial effect of PTP1B inhibitors in counteracting impairments of cognition, neural morphology, and signaling. We showed that obese individuals had negative relationship between serum PTP1B levels and cognitive function. Furthermore, the PTP1B level in the forebrain increased in patients with neurodegenerative diseases and obese cognitive impairment mice with the expansion of white matter, neuroinflammation and brain atrophy. PTP1B globally or forebrain-specific knockout mice on an obesogenic high-fat diet showed enhanced cognition and improved synaptic ultrastructure and proteins in the forebrain. Specifically, deleting PTP1B in leptin receptor-expressing cells improved leptin synaptic signaling and increased BDNF expression in the forebrain of obese mice. Importantly, we found that various PTP1B allosteric inhibitors (e.g., MSI-1436, well-tolerated in Phase 1 and 1b clinical trials for obesity and type II diabetes) prevented these alterations, including improving cognition, neurite outgrowth, leptin synaptic signaling and BDNF in both obese cognitive impairment mice and a neural cell model of PTP1B overexpression. These findings suggest that increased forebrain PTP1B is associated with cognitive decline in obesity, whereas inhibition of PTP1B could be a promising strategy for preventing neurodegeneration induced by obesity.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221006, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, NSW 2522, Australia
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221006, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huimei An
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing 10096, China
| | - Meng Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing 10096, China
| | - Danhong Lin
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, NSW 2522, Australia.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Bizzoca A, Jirillo E, Flace P, Gennarini G. Overall Role of Contactins Expression in Neurodevelopmental Events and Contribution to Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-128217. [PMID: 36515028 DOI: 10.2174/1871527322666221212160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurodegenerative disorders may depend upon a misregulation of the pathways which sustain neurodevelopmental control. In this context, this review article focuses on Friedreich ataxia (FA), a neurodegenerative disorder resulting from mutations within the gene encoding the Frataxin protein, which is involved in the control of mitochondrial function and oxidative metabolism. OBJECTIVE The specific aim of the present study concerns the FA molecular and cellular substrates, for which available transgenic mice models are proposed, including mutants undergoing misexpression of adhesive/morphoregulatory proteins, in particular belonging to the Contactin subset of the immunoglobulin supergene family. METHODS In both mutant and control mice, neurogenesis was explored by morphological/morphometric analysis through the expression of cell type-specific markers, including -tubulin, the Contactin-1 axonal adhesive glycoprotein, as well as the Glial Fibrillary Acidic Protein (GFAP). RESULTS Specific consequences were found to arise from the chosen misexpression approach, consisting of a neuronal developmental delay associated with glial upregulation. Protective effects against the arising phenotype resulted from antioxidants (essentially epigallocatechin gallate (EGCG)) administration, which was demonstrated through the profiles of neuronal (-tubulin and Contactin 1) as well as glial (GFAP) markers, in turn indicating the concomitant activation of neurodegeneration and neuro repair processes. The latter also implied activation of the Notch-1 signaling. CONCLUSION Overall, this study supports the significance of changes in morphoregulatory proteins expression in the FA pathogenesis and of antioxidant administration in counteracting it, which, in turn, allows to devise potential therapeutic approaches.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs. Medical School. University of Bari. Piazza Giulio Cesare, 11. I-70124 Bari. Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs. Medical School. University of Bari. Piazza Giulio Cesare, 11. I-70124 Bari. Italy
| | - Paolo Flace
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs. Medical School. University of Bari. Piazza Giulio Cesare, 11. I-70124 Bari. Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs. Medical School. University of Bari. Piazza Giulio Cesare, 11. I-70124 Bari. Italy
| |
Collapse
|
3
|
Bizzoca A, Caracciolo M, Corsi P, Magrone T, Jirillo E, Gennarini G. Molecular and Cellular Substrates for the Friedreich Ataxia. Significance of Contactin Expression and of Antioxidant Administration. Molecules 2020; 25:E4085. [PMID: 32906751 PMCID: PMC7570916 DOI: 10.3390/molecules25184085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, the neural phenotype is explored in rodent models of the spinocerebellar disorder known as the Friedreich Ataxia (FA), which results from mutations within the gene encoding the Frataxin mitochondrial protein. For this, the M12 line, bearing a targeted mutation, which disrupts the Frataxin gene exon 4 was used, together with the M02 line, which, in addition, is hemizygous for the human Frataxin gene mutation (Pook transgene), implying the occurrence of 82-190 GAA repeats within its first intron. The mutant mice phenotype was compared to the one of wild type littermates in regions undergoing differential profiles of neurogenesis, including the cerebellar cortex and the spinal cord by using neuronal (β-tubulin) and glial (Glial Fibrillary Acidic Protein) markers as well as the Contactin 1 axonal glycoprotein, involved in neurite growth control. Morphological/morphometric analyses revealed that while in Frataxin mutant mice the neuronal phenotype was significantly counteracted, a glial upregulation occurred at the same time. Furthermore, Contactin 1 downregulation suggested that changes in the underlying gene contributed to the disorder pathogenesis. Therefore, the FA phenotype implies an alteration of the developmental profile of neuronal and glial precursors. Finally, epigallocatechin gallate polyphenol administration counteracted the disorder, indicating protective effects of antioxidant administration.
Collapse
Affiliation(s)
| | | | | | | | | | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. I-70124 Bari, Italy; (A.B.); (M.C.); (P.C.); (T.M.); (E.J.)
| |
Collapse
|
4
|
Magrone T, Haslberger A, Jirillo E, Serafini M. Editorial: Immunonutrient Supplementation. Front Nutr 2019; 6:182. [PMID: 31850361 PMCID: PMC6901678 DOI: 10.3389/fnut.2019.00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | | | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Mauro Serafini
- Functional Foods and Metabolic Stress Prevention Laboratory, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|