1
|
Sharma PK, Jerosha S, Subramonian SG, Raja R S, RK K. Cobblestone lissencephaly (Type II), clinical, and neuroimaging: A case report and literature review. Radiol Case Rep 2024; 19:4794-4803. [PMID: 39228958 PMCID: PMC11367506 DOI: 10.1016/j.radcr.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/05/2024] Open
Abstract
Cobblestone lissencephaly (C-LIS) (TYPE II) is a rare and severe neuronal migration disorder characterized by a smooth brain surface with overmigrated neurons and abnormal formation of cerebral convolutions or gyri during fetal development, resulting in a cobblestone appearance. C-LIS is associated with eye anomalies and muscular dystrophy. This case report presents a detailed clinical and neuroimaging analysis of a patient diagnosed with cobblestone lissencephaly (Type II). It reviews pertinent literature to enhance our understanding of this complex condition. We report a case of a 6-year-old female child with cobblestone lissencephaly (C-LIS) (Type II) severe developmental delays, hypotonia, and recurrent intractable seizures. Magnetic resonance imaging (MRI) revealed a characteristic cobblestone appearance on the brain surface, indicative of abnormal neuronal migration. In addition to the classic findings of Type II Cobblestone lissencephaly, the patient displayed ventriculomegaly and cerebellar hypoplasia, contributing to the overall neurological impairment observed. The literature review highlights the genetic basis of cobblestone lissencephaly, emphasizing the involvement of genes associated with glycosylation processes and basement membrane integrity. Neuroimaging findings, including MRI and computed tomography scans, are crucial for accurate diagnosis and prognostication. Early identification of cobblestone lissencephaly allows for appropriate counseling and management strategies. However, the prognosis remains guarded, and interventions primarily focus on supportive care and seizure management. This case report contributes to the knowledge of cobblestone lissencephaly, shedding light on the clinical spectrum and neuroimaging features associated with this rare disorder. To clarify the underlying genetic mechanisms and possible therapeutic pathways for better patient outcomes, more investigation is necessary.
Collapse
Affiliation(s)
- Praveen K. Sharma
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India
| | - Stany Jerosha
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India
| | - Sakthi Ganesh Subramonian
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India
| | - Sam Raja R
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India
| | - Karpagam RK
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
2
|
Ortug A, Valli B, Alatorre Warren JL, Shiohama T, van der Kouwe A, Takahashi E. Brain Pathways in LIS1-Associated Lissencephaly Revealed by Diffusion MRI Tractography. Brain Sci 2023; 13:1655. [PMID: 38137102 PMCID: PMC10742067 DOI: 10.3390/brainsci13121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Lissencephaly (LIS) is a rare neurodevelopmental disorder with severe symptoms caused by abnormal neuronal migration during cortical development. It is caused by both genetic and non-genetic factors. Despite frequent studies about the cortex, comprehensive elucidation of structural abnormalities and their effects on the white matter is limited. The main objective of this study is to analyze abnormal neuronal migration pathways and white matter fiber organization in LIS1-associated LIS using diffusion MRI (dMRI) tractography. For this purpose, slabs of brain specimens with LIS (n = 3) and age and sex-matched controls (n = 4) were scanned with 3T dMRI. Our high-resolution ex vivo dMRI successfully identified common abnormalities across the samples. The results revealed an abnormal increase in radially oriented subcortical fibers likely associated with radial migration pathways and u-fibers and a decrease in association fibers in all LIS specimens.
Collapse
Affiliation(s)
- Alpen Ortug
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - José Luis Alatorre Warren
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emi Takahashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA; (A.O.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Chavoshnejad P, Vallejo L, Zhang S, Guo Y, Dai W, Zhang T, Razavi MJ. Mechanical hierarchy in the formation and modulation of cortical folding patterns. Sci Rep 2023; 13:13177. [PMID: 37580340 PMCID: PMC10425471 DOI: 10.1038/s41598-023-40086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains.
Collapse
Affiliation(s)
- Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Liam Vallejo
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Songyao Zhang
- Brain Decoding Research Center and School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yanchen Guo
- Department of Computer Science, Binghamton University, Binghamton, NY, USA
| | - Weiying Dai
- Department of Computer Science, Binghamton University, Binghamton, NY, USA
| | - Tuo Zhang
- Brain Decoding Research Center and School of Automation, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
4
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Tendler BC, Hanayik T, Ansorge O, Bangerter-Christensen S, Berns GS, Bertelsen MF, Bryant KL, Foxley S, van den Heuvel MP, Howard AFD, Huszar IN, Khrapitchev AA, Leonte A, Manger PR, Menke RAL, Mollink J, Mortimer D, Pallebage-Gamarallage M, Roumazeilles L, Sallet J, Scholtens LH, Scott C, Smart A, Turner MR, Wang C, Jbabdi S, Mars RB, Miller KL. The Digital Brain Bank, an open access platform for post-mortem imaging datasets. eLife 2022; 11:e73153. [PMID: 35297760 PMCID: PMC9042233 DOI: 10.7554/elife.73153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Post-mortem magnetic resonance imaging (MRI) provides the opportunity to acquire high-resolution datasets to investigate neuroanatomy and validate the origins of image contrast through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), a data release platform providing open access to curated, multimodal post-mortem neuroimaging datasets. Datasets span three themes-Digital Neuroanatomist: datasets for detailed neuroanatomical investigations; Digital Brain Zoo: datasets for comparative neuroanatomy; and Digital Pathologist: datasets for neuropathology investigations. The first Digital Brain Bank data release includes 21 distinctive whole-brain diffusion MRI datasets for structural connectivity investigations, alongside microscopy and complementary MRI modalities. This includes one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion MRI in fourteen nonhuman primate species, and one of the largest post-mortem whole-brain cohort imaging studies in neurodegeneration. The Digital Brain Bank is the culmination of our lab's investment into post-mortem MRI methodology and MRI-microscopy analysis techniques. This manuscript provides a detailed overview of our work with post-mortem imaging to date, including the development of diffusion MRI methods to image large post-mortem samples, including whole, human brains. Taken together, the Digital Brain Bank provides cross-scale, cross-species datasets facilitating the incorporation of post-mortem data into neuroimaging studies.
Collapse
Affiliation(s)
- Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Taylor Hanayik
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Olaf Ansorge
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Sarah Bangerter-Christensen
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen ZooFrederiksbergDenmark
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Sean Foxley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
- Department of Radiology, University of ChicagoChicagoUnited States
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Amy FD Howard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Alexandre A Khrapitchev
- Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUnited Kingdom
| | - Anna Leonte
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| | - Ricarda AL Menke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Jeroen Mollink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Duncan Mortimer
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Menuka Pallebage-Gamarallage
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Stem Cell and Brain Research Institute, Université Lyon 1, INSERMBronFrance
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Connor Scott
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Adele Smart
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
6
|
Garcia KE, Wang X, Kroenke CD. A model of tension-induced fiber growth predicts white matter organization during brain folding. Nat Commun 2021; 12:6681. [PMID: 34795256 PMCID: PMC8602459 DOI: 10.1038/s41467-021-26971-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity.
Collapse
Affiliation(s)
- Kara E Garcia
- Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Evansville, IN, 47715, USA.
- Washington University in St. Louis, Department of Mechanical Engineering and Materials Science, St. Louis, MO, 63130, USA.
| | - Xiaojie Wang
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher D Kroenke
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
7
|
Pogledic I, Schwartz E, Bobić-Rasonja M, Mitter C, Baltzer P, Gruber GM, Milković-Periša M, Haberler C, Bettelheim D, Kasprian G, Judaš M, Prayer D, Jovanov-Milošević N. 3T MRI signal intensity profiles and thicknesses of transient zones in human fetal brain at mid-gestation. Eur J Paediatr Neurol 2021; 35:67-73. [PMID: 34653829 DOI: 10.1016/j.ejpn.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022]
Abstract
In this study we compare temporal lobe (TL) signal intensity (SI) profiles, along with the average thicknesses of the transient zones obtained from postmortem MRI (pMRI) scans and corresponding histological slices, to the frontal lobe (FL) SI and zone thicknesses, in normal fetal brains. The purpose was to assess the synchronization of the corticogenetic processes in different brain lobes. Nine postmortem human fetal brains without cerebral pathologies, from 19 to 24 weeks of gestation (GW) were analyzed on T2-weighted 3T pMRI, at the coronal level of the thalamus and basal ganglia. The SI profiles of the transient zones in the TL correlate well spatially and temporally to the signal intensity profile of the FL. During the examined period, in the TL, the intermediate and subventricular zone are about the size of the subplate zone (SP), while the superficial SP demonstrates the highest signal intensity. The correlation of the SI profiles and the distributions of the transient zones in the two brain lobes, indicates a time-aligned histogenesis during this narrow time window. The 3TpMRI enables an assessment of the regularity of lamination patterns in the fetal telencephalic wall, upon comparative evaluation of sizes of the transient developmental zones and the SI profiles of different cortical regions. A knowledge of normal vs. abnormal transient lamination patterns and the SI profiles is a prerequisite for further advancement of the MR diagnostic tools needed for early detection of developmental brain pathologies prenatally, especially mild white matter injuries such as lesions of TL due to prenatal cytomegalovirus infections, or cortical malformations.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Mihaela Bobić-Rasonja
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia; University of Zagreb, School of Medicine, Department of Biology, Šalata 3, 10000, Zagreb, Croatia
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Pascal Baltzer
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerlinde Maria Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Marija Milković-Periša
- University Hospital Centre Zagreb, Department of Pathology and Cytology, Petrova 13, 10000, Zagreb, Croatia; University of Zagreb, School of Medicine, Institute of Pathology, Šalata 10, 10000 Zagreb, Croatia
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dieter Bettelheim
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Miloš Judaš
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Nataša Jovanov-Milošević
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia; University of Zagreb, School of Medicine, Department of Biology, Šalata 3, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Brock S, Cools F, Jansen AC. Neuropathology of genetically defined malformations of cortical development-A systematic literature review. Neuropathol Appl Neurobiol 2021; 47:585-602. [PMID: 33480109 PMCID: PMC8359484 DOI: 10.1111/nan.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
AIMS Malformations of cortical development (MCD) include a heterogeneous spectrum of clinical, imaging, molecular and histopathological entities. While the understanding of genetic causes of MCD has improved with the availability of next-generation sequencing modalities, genotype-histopathological correlations remain limited. This is the first systematic review of molecular and neuropathological findings in patients with MCD to provide a comprehensive overview of the literature. METHODS A systematic review was performed between November 2019 and February 2020. A MEDLINE search was conducted for 132 genes previously linked to MCD in order to identify studies reporting macroscopic and/or microscopic findings in patients with a confirmed genetic cause. RESULTS Eighty-one studies were included in this review reporting neuropathological features associated with pathogenic variants in 46 genes (46/132 genes, 34.8%). Four groups emerged, consisting of (1) 13 genes with well-defined histological-genotype correlations, (2) 27 genes for which neuropathological reports were limited, (3) 5 genes with conflicting neuropathological features, and (4) 87 genes for which no histological data were available. Lissencephaly and polymicrogyria were reported most frequently. Associated brain malformations were variably present, with abnormalities of the corpus callosum as most common associated feature. CONCLUSIONS Neuropathological data in patients with MCD with a defined genetic cause are available only for a small number of genes. As each genetic cause might lead to unique histopathological features of MCD, standardised thorough neuropathological assessment and reporting should be encouraged. Histological features can help improve the understanding of the pathogenesis of MCD and generate hypotheses with impact on further research directions.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
9
|
Tendler BC, Foxley S, Hernandez-Fernandez M, Cottaar M, Scott C, Ansorge O, Miller KL, Jbabdi S. Use of multi-flip angle measurements to account for transmit inhomogeneity and non-Gaussian diffusion in DW-SSFP. Neuroimage 2020; 220:117113. [PMID: 32621975 PMCID: PMC7573656 DOI: 10.1016/j.neuroimage.2020.117113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 11/06/2022] Open
Abstract
Diffusion-weighted steady-state free precession (DW-SSFP) is an SNR-efficient diffusion imaging method. The improved SNR and resolution available at ultra-high field has motivated its use at 7T. However, these data tend to have severe B1 inhomogeneity, leading not only to spatially varying SNR, but also to spatially varying diffusivity estimates, confounding comparisons both between and within datasets. This study proposes the acquisition of DW-SSFP data at two-flip angles in combination with explicit modelling of non-Gaussian diffusion to address B1 inhomogeneity at 7T. Data were acquired from five fixed whole human post-mortem brains with a pair of flip angles that jointly optimize the diffusion contrast-to-noise (CNR) across the brain. We compared one- and two-flip angle DW-SSFP data using a tensor model that incorporates the full DW-SSFP Buxton signal, in addition to tractography performed over the cingulum bundle and pre-frontal cortex using a ball & sticks model. The two-flip angle DW-SSFP data produced angular uncertainty and tractography estimates close to the CNR optimal regions in the single-flip angle datasets. The two-flip angle tensor estimates were subsequently fitted using a modified DW-SSFP signal model that incorporates a gamma distribution of diffusivities. This allowed us to generate tensor maps at a single effective b-value yielding more consistent SNR across tissue, in addition to eliminating the B1 dependence on diffusion coefficients and orientation maps. Our proposed approach will allow the use of DW-SSFP at 7T to derive diffusivity estimates that have greater interpretability, both within a single dataset and between experiments.
Collapse
Affiliation(s)
- Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sean Foxley
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Connor Scott
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|