1
|
Siyu Y, Shixiao Z, Congying S, Xinqin Z, Zhen H, Xiaoying W. Advances in cytokine-based herbal medicine against premature ovarian insufficiency: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118477. [PMID: 38909824 DOI: 10.1016/j.jep.2024.118477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premature ovarian insufficiency (POI) refers to a dramatic decrease in the number and/or quality of oocytes in the ovaries before the age of 40 years, and is a key cause of female infertility. The prevalence of POI has been increasing annually and tends to be younger. Researches on the etiology of POI and related pathogenesis are still very limited. Herbal medicine can treat many gynecological diseases. And herbal medicine is effective in reproductive health care such as infertility. In recent years, it has been found that immune modulation by cytokines (CK) can prevent or intervene in POI, and herbal medicine can treat POI by regulating CK to improve ovarian function and fertility. AIM OF THE STUDY This review presents an overview of the molecular mechanisms of regulation of POI related CK, and reports the therapeutic effect of herbal medicine on POI including herbal medicine formulas, single herbal medicine, herbal medicine active components and acupuncture. This review provides theoretical support for clinical prevention and treatment of POI, and provides new ideas for researches on herbal medicine treatment of POI. MATERIALS AND METHODS We performed a collection of relevant scientific articles from different scientific databases regarding the therapeutic effect of herbal medicine on POI by regulating CK, including PubMed, Web of Science, Wanfang Database, CNKI and other publication resources. The search terms used in this review include, 'premature ovarian insufficiency', 'premature ovarian failure (POF)', 'infertility', 'herbal medicine', 'acupuncture', 'cytokine', 'interleukin (IL)', 'tumor necrosis factor-α (TNF-α)', 'interferon-γ (IFN-γ)', 'transforming growth factor-β (TGF-β)', 'vascular endothelial growth factor (VEGF)', 'immune' and 'inflammation'. This review summarized and analyzed the therapeutic effect of herbal medicine according to the existing experimental and clinical researches. RESULTS The results showed that herbal medicine treats POI through CK (including ILs, TNF-α, INF-γ, VEGF, TGF-β and others) and related signaling pathways, which regulates reproductive hormones disorder, reduces ovarian inflammatory damage, oxidative stress, apoptosis and follicular atresia, improves ovarian pathological damage and ovarian reserve function. CONCLUSIONS This review enriches the theory of POI treatments based on herbal medicine by regulating CK. The specific mechanisms of action and clinical researches on the treatment of POI by herbal medicine should be strengthened in order to promote the application of herbal medicine in the clinic and provide new ideas and better choices for the treatment of POI.
Collapse
Affiliation(s)
- Yuan Siyu
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhu Shixiao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sun Congying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhong Xinqin
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hu Zhen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wang Xiaoying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Desaulniers AT, Cederberg RA, Lents CA, White BR. Knockdown of Gonadotropin-Releasing Hormone II Receptor Impairs Ovulation Rate, Corpus Luteum Development, and Progesterone Production in Gilts. Animals (Basel) 2024; 14:2350. [PMID: 39199883 PMCID: PMC11350859 DOI: 10.3390/ani14162350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Reproduction is classically controlled by gonadotropin-releasing hormone (GnRH-I) and its receptor (GnRHR-I) within the brain. In pigs, a second form (GnRH-II) and its specific receptor (GnRHR-II) are also produced, with greater abundance in peripheral vs. central reproductive tissues. The binding of GnRH-II to GnRHR-II has been implicated in the autocrine/paracrine regulation of gonadal steroidogenesis rather than gonadotropin secretion. Blood samples were collected from transgenic gilts, with the ubiquitous knockdown of GnRHR-II (GnRHR-II KD; n = 8) and littermate controls (n = 7) at the onset of estrus (follicular) and 10 days later (luteal); serum concentrations of 16 steroid hormones were quantified by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Upon euthanasia, ovarian weight (OWT), ovulation rate (OR), and the weight of each excised Corpus luteum (CLWT) were recorded; HPLC-MS/MS was performed on CL homogenates. During the luteal phase, serum progesterone concentration was reduced by 18% in GnRHR-II KD versus control gilts (p = 0.0329). Age and weight at puberty, estrous cycle length, and OWT were similar between lines (p > 0.05). Interestingly, OR was reduced (p = 0.0123), and total CLWT tended to be reduced (p = 0.0958) in GnRHR-II KD compared with control females. Luteal cells in CL sections from GnRHR-II KD gilts were hypotrophic (p < 0.0001). Therefore, GnRH-II and its receptor may help regulate OR, CL development, and progesterone production in gilts.
Collapse
Affiliation(s)
- Amy T. Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA; (A.T.D.); (R.A.C.)
| | - Rebecca A. Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA; (A.T.D.); (R.A.C.)
| | - Clay A. Lents
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA;
| | - Brett R. White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA; (A.T.D.); (R.A.C.)
| |
Collapse
|
3
|
Crespo D, Fjelldal PG, Hansen TJ, Kjærner-Semb E, Skaftnesmo KO, Thorsen A, Norberg B, Edvardsen RB, Andersson E, Schulz RW, Wargelius A, Kleppe L. Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure. FASEB J 2024; 38:e23837. [PMID: 39031536 DOI: 10.1096/fj.202400370r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17β plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anders Thorsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Haukanes, Norway
| | - Rolf B Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
4
|
Liu M, Zhang C, Chen J, Xu Q, Liu S, Chao X, Yang H, Wang T, Muhammad A, Schinckel AP, Zhou B. Characterization and analysis of transcriptomes of multiple tissues from estrus and diestrus in pigs. Int J Biol Macromol 2024; 256:128324. [PMID: 38007026 DOI: 10.1016/j.ijbiomac.2023.128324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
A comprehensive understanding of the complex regulatory mechanisms governing estrus and ovulation across multiple tissues in mammals is imperative to improve the reproductive performance of livestock and mitigate ovulation-related disorders in humans. To comprehensively elucidate the regulatory landscape, we analyzed the transcriptome of protein-coding genes and long intergenic non-coding RNAs (lincRNAs) in 58 samples (including the hypothalamus, pituitary, ovary, vagina, and vulva) derived from European Large White gilts and Chinese Mi gilts during estrus and diestrus. We constructed an intricate regulatory network encompassing 358 hub genes across the five examined tissues. Furthermore, our investigation identified 85 differentially expressed lincRNAs that are predicted to target 230 genes associated with critical functions including behavior, receptors, and apoptosis. Importantly, we found that vital components of estrus and ovulation events involve "Apoptosis" pathway in the hypothalamus, "Autophagy" in the ovary, as well as "Hypoxia" and "Angiogenesis" in the vagina and vulva. We have identified several differentially expressed transcription factors (TFs), such as SPI1 and HES2, which regulate these pathways. SPI1 may suppress transcription in the autophagy pathway, promoting apoptosis and inhibiting the proliferation of ovarian granulosa cells. Our study provides the most comprehensive transcriptional profiling information related to estrus and ovulation events.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Han X, Yu S, Cui Y, Li J, Fan J, Wang L, Wang M, Pan Y, Xu G. MiR-23a promotes autophagy of yak cumulus cells to alleviate apoptosis via the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway. Theriogenology 2023; 212:50-63. [PMID: 37690377 DOI: 10.1016/j.theriogenology.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
The ultimate fate of Graafian follicles is ovulation or atresia which relies on the highly coordinated processes of apoptosis and autophagy in ovarian cells. Long non-coding RNA maternally expressed gene 3 (LncRNA MEG3), miR-23a, and apoptosis signal-regulating kinase 1 (ASK1) are factors associated with autophagy. However, whether these factors can regulate autophagy in cumulus cells (CCs) of yak is unclear. Here, miR-23a overexpression upregulated the LC3-II/LC3-I ratio and Beclin1 abundance while reducing p62 accumulation (p < 0.05). The monodansylcadaverine assay exhibited a marked increase in punctate green fluorescence, and the GFP-LC3B displayed increased yellow fluorescence (p < 0.05). The opposite effect was observed for miR-23a inhibitors. Furthermore, miR-23a overexpression downregulated the abundance of ASK1 mRNA and total ASK1 protein (t-ASK1), whereas miR-23a inhibitors up-regulated them (p < 0.05). The effects of miR-23a overexpression on ASK1 phosphorylated protein at serine 845 (P-845), total JNK (c-Jun N-terminal kinase) (t-JNK) and the JNK phosphorylated protein (p-JNK) were similar to those of t-ASK1 but elicited the opposite effect on ASK1 phosphorylated protein at serine 967 (P-967) (p < 0.05). We further demonstrated that ASK1 expression can be silenced by small-interfering RNA (siRNA), which had no significant effect on t-JNK abundance (p > 0.05) but significantly suppressed the p-JNK expression (p < 0.05). Silencing ASK1 significantly improved Beclin1 abundance and the LC3-II/LC3-I ratio, but decreased p62 abundance (p < 0.05). An increase in yellow GFP-LC3B puncta and green MDC staining puncta were observed (p < 0.05). Overexpression of LncRNA MEG3 significantly increased the expression of t-ASK1, P-845, and JNK and decreased the abundance of P-967 and miR-23a (p < 0.05). In addition, miR-23a upregulation reduced the number of the TUNEL-positive cells, and the addition of 8 mM 3-methyladenine (3-MA) reversed this downregulation (p < 0.05). Similar trends were observed for the Bax/Bcl2 ratio and cleaved-caspase3 abundance. In summary, miR-23a promotes autophagy by inhibiting ASK1 abundance, which reduces apoptosis of yak CCs. This effect can be inhibited by LncRNA MEG3, which has implications for decreasing abnormal Graafian follicular atresia and maintaining development.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingjing Li
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Gengquan Xu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Chen PR, Uh K, Monarch K, Spate LD, Reese ED, Prather RS, Lee K. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs†. Biol Reprod 2023; 108:611-618. [PMID: 36648449 PMCID: PMC10106843 DOI: 10.1093/biolre/ioad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Growth differentiation factor 9 (GDF9) is a secreted protein belonging to the transforming growth factor beta superfamily and has been well characterized for its role during folliculogenesis in the ovary. Although previous studies in mice and sheep have shown that mutations in GDF9 disrupt follicular progression, the exact role of GDF9 in pigs has yet to be elucidated. The objective of this study was to understand the role of GDF9 in ovarian function by rapidly generating GDF9 knockout (GDF9-/-) pigs by using the CRISPR/Cas9 system. Three single-guide RNAs designed to disrupt porcine GDF9 were injected with Cas9 mRNA into zygotes, and blastocyst-stage embryos were transferred into surrogates. One pregnancy was sacrificed on day 100 of gestation to investigate the role of GDF9 during oogenesis. Four female fetuses were recovered with one predicted to be GDF9-/- and the others with in-frame mutations. All four had fully formed oocytes within primordial follicles, confirming that knockout of GDF9 does not disrupt oogenesis. Four GDF9 mutant gilts were generated and were grown past puberty. One gilt was predicted to completely lack functional GDF9 (GDF9-/-), and the gilt never demonstrated standing estrus and had a severely underdeveloped reproductive tract with large ovarian cysts. Further examination revealed that the follicles from the GDF9-/- gilt did not progress past preantral stages, and the uterine vasculature was less extensive than the control pigs. By using the CRISPR/Cas9 system, we demonstrated that GDF9 is a critical growth factor for proper ovarian development and function in pigs.
Collapse
Affiliation(s)
- Paula R Chen
- United States Department of Agriculture—Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, USA
| | - Kyungjun Uh
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kaylynn Monarch
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Emily D Reese
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Li W, Liu Z, Wang P, Di R, Wang X, Liu Y, Chu M. The transcription factor RUNX1 affects the maturation of porcine oocytes via the BMP15/TGF-β signaling pathway. Int J Biol Macromol 2023; 238:124026. [PMID: 36933589 DOI: 10.1016/j.ijbiomac.2023.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Bone morphogenetic protein 15 (BMP15) is specifically expressed in oocytes in pigs at all stages from early stages to ovulation and has an important role in oocyte maturation. However, there are few reports on the molecular mechanisms by which BMP15 affects oocyte maturation. In this study, we identified the core promoter region of BMP15 using a dual luciferase activity assay and successfully predicted the DNA binding motif of the transcription factor RUNX1. The effect of BMP15 and RUNX1 on oocyte maturation was examined using the first polar body extrusion rate, a reactive oxygen species (ROS) assay and total glutathione (GSH) content at three time points of 12, 24 and 48 h of in vitro culture of porcine isolated oocytes. Subsequently, the effect of the transcription factor RUNX1 on the TGF-β signaling pathway (BMPR1B and ALK5) was further verified using RT-qPCR and Western blotting. We found that the overexpression of BMP15 significantly increased the first polar body extrusion rate (P < 0.01) and total glutathione content of oocytes cultured in vitro for 24 h and decreased reactive oxygen levels (P < 0.01), whereas interference with BMP15 decreased the first polar body extrusion rate (P < 0.01), increased reactive oxygen levels in oocytes cultured in vitro for 24 h (P < 0.01), and decreased glutathione content (P < 0.01). The dual luciferase activity assay and online software prediction showed that RUNX1 is a potential transcription factor binding to the core promoter region (-1203/-1423 bp) of BMP15. Overexpression of RUNX1 significantly increased the expression of BMP15 and oocyte maturation rate, while inhibition of RUNX1 decreased the expression of BMP15 and the oocyte maturation rate. Moreover, the expression of BMPR1B and ALK5 in the TGF-β signaling pathway increased significantly after overexpression of RUNX1, whereas their expression decreased after inhibition of RUNX1. Overall, our results suggest that the transcription factor RUNX1 positively regulates the expression of BMP15 and influences oocyte maturation through the TGF-β signaling pathway. This study provides a theoretical basis for further complementing the BMP15/TGF-β signaling pathway to regulate mammalian oocyte maturation.
Collapse
Affiliation(s)
- Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Jiang T, Wen K, Liao A, Wang Y, Jiao Y, Guo J, Chen Y, He Z, Cong P. Efficient editing BMP15 in porcine oocytes through microinjection of CRISPR ctRNP. Theriogenology 2023; 198:241-249. [PMID: 36621133 DOI: 10.1016/j.theriogenology.2022.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic protein 15 (BMP15) is an X-linked gene encoding an oocyte secreted factor, which plays varied functions in the female fertility between mono-ovulatory and poly-ovulatory mammalian species. We previously found that knockout of BMP15 completely blocked porcine follicular development at preantral stages. However, the specific function of BMP15 on porcine oocytes in vitro maturation remains largely unknown. Here, we injected the pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complex into the cytoplasm of germinal vesicle stage porcine oocytes to disrupt BMP15. The ctRNP composed of Cas9 nuclease and crRNA-tracrRNA complex at 1.2/1 content ratio. The tested crRNA-tracrRNA complex concentration ranging from 50 to 200 ng/μL, all presented effective editing of BMP15 in porcine oocytes, and the 125 ng/μL crRNA-tracrRNA complex presented the highest editing efficiency (39.23 ± 3.33%). Surprisingly, we found approximately 95% edited oocytes presented monoallelic mutations, and only 5% edited oocytes harbored biallelic mutations. Interestingly, the coinjected two crRNAs guided the ctRNP complex to concurrently cut within a 10 bp window of the PAM (protospacer adjacent motif), resulting in a precise deletion within BMP15 in 85.9% edited oocytes, and additional deletion happened in 14.1% edited oocytes, which resulted in large fragment deletions in BMP15. Most deletions caused frameshift and introduced premature stop codon in BMP15, resulting in the disruption of BMP15 protein expression, which was confirmed by the Western blot analysis showing the reduced BMP15 protein expression in ctRNP injected oocytes. The disruption of BMP15 attenuated the activation of SMAD1/5/8 signaling, and impaired cumulus expansion of porcine cumulus cell-oocyte complexes (COCs). Our study proved that delivering CRISPR ctRNP into porcine oocytes by microinjection was able to edit BMP15 efficiently, providing a new strategy to investigate the functions of oocyte-specific secreted factors in oocyte in vitro maturation.
Collapse
Affiliation(s)
- Tiantuan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Alian Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yixian Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yafei Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinming Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Ajafar MH, Kadhim AH, Al-Thuwaini TM, Al-Shuhaib MBS, Hussein TH. Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v45i1.57927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
. Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.
Collapse
|
10
|
Afkhami F, Shahbazi S, Farzadi L, Danaei S. Novel bone morphogenetic protein 15 (BMP15) gene variants implicated in premature ovarian insufficiency. Reprod Biol Endocrinol 2022; 20:42. [PMID: 35232444 PMCID: PMC8886931 DOI: 10.1186/s12958-022-00913-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 15 (BMP15) is expressed in oocytes and plays a crucial role in the reproduction of mono-ovulating species. In humans, BMP15 gene mutations lead to imperfect protein function and premature ovarian insufficiency. Here we investigated the BMP15 gene variants in a population of Iranian women with premature ovarian insufficiency. We conducted predictive bioinformatics analysis to further study the outcomes of BMP15 gene alterations. METHODS Twenty-four well-diagnosed premature ovarian insufficiency cases with normal karyotype participated in this study. The entire coding sequence and exon-intron junctions of the BMP15 gene were analyzed by direct sequencing. In-silico analysis was applied using various pipelines integrated into the Ensembl Variant Effect Predictor online tool. The clinical interpretation was performed based on the approved guidelines. RESULTS By gene screening of BMP15, we discovered p.N103K, p.A180T, and p.M184T heterozygous variants in 3 unrelated patients. The p.N103K and p.M184T were not annotated on gnomAD, 1000 Genome and/or dbSNP. These mutations were not identified in 800 Iranians whole-exome sequencing that is recorded on Iranom database. We identified the p.N103K variant in a patient with secondary amenorrhea at the age of 17, elevated FSH and atrophic ovaries. The p.M184T was detected in a sporadic case with atrophic ovaries and very high FSH who developed secondary amenorrhea at the age of 31. CONCLUSIONS Here we newly identified p.N103K and p.M184T mutation in the BMP15 gene associated with idiopathic premature ovarian insufficiency. Both mutations have occurred in the prodomain region of protein. Despite prodomain cleavage through dimerization, it is actively involved in the mature protein function. Further studies elucidating the roles of prodomain would lead to a better understanding of the disease pathogenesis.
Collapse
Affiliation(s)
- Fatemeh Afkhami
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Laya Farzadi
- Department of Obstetrics and Gynecology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaei
- Gynecology Departments, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| |
Collapse
|
11
|
MORIKAWA R, KYOGOKU H, LEE J, MIYANO T. Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells <i>in vitro</i>. J Reprod Dev 2022; 68:238-245. [PMID: 35491090 PMCID: PMC9334317 DOI: 10.1262/jrd.2022-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9)
and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte–cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles
(1.2–1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0–100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium
without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent
manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by
8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate
their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from
oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.
Collapse
Affiliation(s)
- Riho MORIKAWA
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirohisa KYOGOKU
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak LEE
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi MIYANO
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
12
|
Abstract
Primary ovarian insufficiency (POI) is determined by exhaustion of follicles in the ovaries, which leads to infertility before the age of 40 years. It is characterized by a strong familial and heterogeneous genetic background. Therefore, we will mainly discuss the genetic basis of POI in this review. We identified 107 genes related to POI etiology in mammals described by several independent groups. Thirty-four of these genes (AARS2, AIRE, ANTXR1, ATM, BMPR1B, CLPP, CYP17A1, CYP19A1, DCAF17, EIF2B, ERAL1, FANCA, FANCC, FMR1, FOXL2, GALT, GNAS, HARS2, HSD17B4, LARS2, LMNA, MGME1, NBN, PMM2, POLG, PREPL, RCBTB1, RECQL2/3/4, STAR, TWNK, and XRCC4/9) have been linked to syndromic POI and are mainly implicated in metabolism function and meiosis/DNA repair. In addition, the majority of genes associated with nonsyndromic POI, widely expanded by high-throughput techniques over the last decade, have been implicated in ovarian development and meiosis/DNA repair pathways (ATG7, ATG9, ANKRD31, BMP8B, BMP15, BMPR1A, BMPR1B, BMPR2, BNC1, BRCA2, CPEB1, C14ORF39, DAZL, DIAPH2, DMC1, ERCC6, FANCL, FANCM, FIGLA, FSHR, GATA4, GDF9, GJA4, HELQ, HSF2BP, HFM1, INSL3, LHCGR, LHX8, MCM8, MCM9, MEIOB, MSH4, MSH5, NANOS3, NOBOX, NOTCH2, NR5A1, NUP107, PGRMC1, POLR3H, PRDM1, PRDM9, PSMC3IP, SOHLH1, SOHLH2, SPIDR, STAG3, SYCE1, TP63, UBR2, WDR62, and XRCC2), whereas a few are related to metabolic functions (EIF4ENIF1, KHDRBS1, MRPS22, POLR2C). Some genes, such as STRA8, FOXO3A, KIT, KITL, WNT4, and FANCE, have been shown to cause ovarian insufficiency in rodents, but mutations in these genes have yet to be elucidated in women affected by POI. Lastly, some genes have been rarely implicated in its etiology (AMH, AMHR2, ERRC2, ESR1, INHA, LMN4, POF1B, POU5F1, REC8, SMC1B). Considering the heterogeneous genetic and familial background of this disorder, we hope that an overview of literature data would reinforce that genetic screening of those patients is worthwhile and helpful for better genetic counseling and patient management.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Ma X, Yi H. BMP15 regulates FSHR through TGF-β receptor II and SMAD4 signaling in prepubertal ovary of Rongchang pigs. Res Vet Sci 2021; 143:66-73. [PMID: 34979443 DOI: 10.1016/j.rvsc.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic protein 15 (BMP15) and follicle-stimulating hormone (FSH) both play important roles in mammalian ovary and follicular development. The aim of the present study is to investigate the effects of BMP15 and FSH in the prepubertal ovary of Rongchang pigs considering a possible signaling mechanism involving TβRII/ SMAD4 and FSHR in granulosa cells. For this purpose, we quantified expression levels of BMP15, SMAD2, SMAD3, SMAD4, SMAD7, TGF-β1, TGF-β2, TGF-β3, TGFβRI, TGFβRII, and FSHR via qRT-PCR at different ages in prepubertal ovaries and cultured biopsy of 90-day-old ovary in Rongchang pig. Additionally, the protein levels of BMP15, FSHR, SMAD2, SMAD4, TGFβRI, TGFβRII, TGF-β1, TGF-β2 were quantified via Western blot and the localizations of BMP15, FSHR and TGFβRII were observed via immunofluorescence confocal microscope. The results showed that expression levels of BMP15, TGF-β1, TGFβRII and FSHR increased significantly at day 60 as compared to day 30 and reached peak value at day 90 in prepubertal ovary of Rongchang pigs. We observed that BMP15, TGFβRII and FSHR was highly presented, which TGFβRII and FSHR displayed co-localization in the follicles of the prepubertal ovaries of 90-day-old Rongchang gilts. Treatment with TGFβRI/II inhibitor LY2109761 significantly decreased the expression of TGFβRI, TGFβRII and SMAD4 and TGFβRI inhibitor LY2157299 decreased TGFβRI, but increased the TGFβRII, SMAD4 and FSHR expression levels. Furthermore, the addition of rBMP15 and rFSH group significantly increased the expression of TGFβRII and FSHR proteins (P < 0.01), but no significant change in the expression of TGFβRI (P > 0.05) was observed by Western blot. In conclusion, BMP15, TGFβRII and FSHR were increased significantly in the prepubertal ovarian follicles of Rongchang pigs and FSHR expression in GCs was regulated by BMP15 and FSH through the TGFβRII.
Collapse
Affiliation(s)
- Xianping Ma
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, PR China; Chongqing Veterinary Science Engineering Research Center, Rongchang, Chongqing, PR China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, PR China; Chongqing NaBii Veterinary Diagnostic and Technical Services Co., Ltd. Rongchang, Chongqing, PR China; National Center of Technology Innovation for Pigs, Rongchang, Chongqing, PR China.
| |
Collapse
|
14
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
15
|
Morikawa R, Lee J, Miyano T. Effects of oocyte-derived growth factors on the growth of porcine oocytes and oocyte-cumulus cell complexes in vitro. J Reprod Dev 2021; 67:273-281. [PMID: 34261834 PMCID: PMC8423607 DOI: 10.1262/jrd.2021-026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During oocyte growth and follicle development, oocytes closely communicate with cumulus cells. We examined the effects of oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the growth and acquisition of meiotic competence of porcine oocytes collected from early antral follicles (1.2-1.5 mm). First, we confirmed that GDF9 and BMP15 mRNAs were expressed almost exclusively in the oocytes. Oocyte-cumulus cell complexes (OCCs) collected from early antral follicles were cultured in growth medium supplemented with 0-100 ng/ml of GDF9 or BMP15 for 5 days. GDF9 dose-dependently increased the OCC diameter, while BMP15 did not. GDF9 and BMP15 had no significant effects on oocyte growth (P > 0.05). When OCCs that had been cultured with 50 and 100 ng/ml BMP15 were subjected to a subsequent maturation culture, they expanded fully by gonadotropic stimulation and 49% and 61% of oocytes matured to metaphase II (MII), respectively. In contrast, GDF9 did not promote cumulus expansion, and < 10% of oocytes matured to MII. Based on the difference in cumulus expansion, we compared the expression of luteinizing hormone/choriogonadotropin receptor (LHCGR) and follicle stimulating hormone receptor (FSHR) mRNAs in cumulus cells. The level of LHCGR mRNA was increased in cumulus cells of the BMP15 group, although there were no significant differences in FSHR mRNA levels among the groups. These results suggest that GDF9 promotes the growth of OCCs and that BMP15 promotes LHCGR mRNA expression in cumulus cells during oocyte growth culture, which may contribute to cumulus expansion and oocyte maturation.
Collapse
Affiliation(s)
- Riho Morikawa
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Miyano
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Tang T, Lin Q, Qin Y, Liang X, Guo Y, Cong P, Liu X, Chen Y, He Z. Effects of bone morphogenetic protein 15 (BMP15) knockdown on porcine testis morphology and spermatogenesis. Reprod Fertil Dev 2021; 32:999-1011. [PMID: 32693912 DOI: 10.1071/rd20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-β (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA. The transgenic boars were fertile, but sperm viability was decreased. Further analysis of the TGFB/SMAD pathway and markers of reproductive capacity, namely androgen receptor and protamine 2, failed to identify any differentially expressed genes. These results indicate that, in the pig, the biological function of BMP15 in the development of male gonads is not as crucial as in ovary development. However, the role of BMP15 in sperm viability requires further investigation. This study provides new insights into the role of BMP15 in male pig reproduction.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yang Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| |
Collapse
|
17
|
Flossmann G, Wurmser C, Pausch H, Tenghe A, Dodenhoff J, Dahinten G, Götz KU, Russ I, Fries R. A nonsense mutation of bone morphogenetic protein-15 (BMP15) causes both infertility and increased litter size in pigs. BMC Genomics 2021; 22:38. [PMID: 33413103 PMCID: PMC7792226 DOI: 10.1186/s12864-020-07343-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background Atypical external genitalia are often a sign of reproductive organ pathologies and infertility with both environmental or genetic causes, including karyotypic abnormalities. Genome-wide association studies (GWAS) provide a means for identifying chromosomal regions harboring deleterious DNA-variants causing such phenotypes. We performed a GWAS to unravel the causes of incidental cases of atypically small vulvae in German Landrace gilts. Results A case-control GWAS involving Illumina porcine SNP60 BeadChip-called genotypes of 17 gilts with atypically small vulvae and 1818 control animals (fertile German Landrace sows) identified a significantly associated region on the X-chromosome (P = 8.81 × 10− 43). Inspection of whole-genome sequencing data in the critical area allowed us to pinpoint a likely causal variant in the form of a nonsense mutation of bone morphogenetic protein-15 (BMP15; Sscrofa11.1_X:g.44618787C>T, BMP15:p.R212X). The mutant allele occurs at a frequency of 6.2% in the German Landrace breeding population. Homozygous gilts exhibit underdeveloped, most likely not functional ovaries and are not fertile. Male carriers do not seem to manifest defects. Heterozygous sows produce 0.41±0.02 (P=4.5 × 10-83) piglets more than wildtype animals. However, the mutant allele’s positive effect on litter size accompanies a negative impact on lean meat growth. Conclusion Our results provide an example for the power of GWAS in identifying the genetic causes of a fuzzy phenotype and add to the list of natural deleterious BMP15 mutations that affect fertility in a dosage-dependent manner, the first time in a poly-ovulatory species. We advise eradicating the mutant allele from the German Landrace breeding population since the adverse effects on the lean meat growth outweigh the larger litter size in heterozygous sows. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07343-x.
Collapse
Affiliation(s)
- Gabriele Flossmann
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany.
| | - Christine Wurmser
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Hubert Pausch
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany.,Animal Genomics, ETH Zürich, Zürich, Switzerland
| | - Amabel Tenghe
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| | - Jörg Dodenhoff
- Institut für Tierzucht, Bayerische Landesanstalt für Landwirtschaft, Poing, Germany
| | - Günther Dahinten
- Institut für Tierzucht, Bayerische Landesanstalt für Landwirtschaft, Poing, Germany
| | - Kay-Uwe Götz
- Institut für Tierzucht, Bayerische Landesanstalt für Landwirtschaft, Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e. V. München, Poing, Germany
| | - Ruedi Fries
- Lehrstuhl für Tierzucht, Technische Universität München, Freising, Germany
| |
Collapse
|
18
|
Shi X, Tang T, Lin Q, Liu H, Qin Y, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9†. Biol Reprod 2020; 103:1054-1068. [PMID: 32761111 DOI: 10.1093/biolre/ioaa138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15), a member of the transforming growth factor beta superfamily, plays an essential role in ovarian follicular development in mono-ovulatory mammalian species. Studies using a biallelic knockout mouse model revealed that BMP15 potentially has just a minimal impact on female fertility and ovarian follicular development in polyovulatory species. In contrast, our previous study demonstrated that in vivo knockdown of BMP15 significantly affected porcine female fertility, as evidenced by the dysplastic ovaries containing significantly decreased numbers of follicles and an increased number of abnormal follicles. This finding implied that BMP15 plays an important role in the regulation of female fertility and ovarian follicular development in polyovulatory species. To further investigate the regulatory role of BMP15 in porcine ovarian and follicular development, here, we describe the efficient generation of BMP15-edited Yorkshire pigs using CRISPR/Cas9. Using artificial insemination experiments, we found that the biallelically edited gilts were all infertile, regardless of different genotypes. One monoallelically edited gilt #4 (Δ66 bp/WT) was fertile and could deliver offspring with a litter size comparable to that of wild-type gilts. Further analysis established that the infertility of biallelically edited gilts was caused by the arrest of follicular development at preantral stages, with formation of numerous structurally abnormal follicles, resulting in streaky ovaries and the absence of obvious estrous cycles. Our results strongly suggest that the role of BMP15 in nonrodent polyovulatory species may be as important as that in mono-ovulatory species.
Collapse
Affiliation(s)
- Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
19
|
Shi S, Zhou X, Li J, Zhang L, Hu Y, Li Y, Yang G, Chu G. MiR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells. J Anim Sci Biotechnol 2020; 11:94. [PMID: 32944234 PMCID: PMC7488653 DOI: 10.1186/s40104-020-00500-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Granulosa cells (GCs) proliferation and estradiol synthesis significantly affect follicular development. The miR-214-3p expression in the ovarian tissues of high-yielding sows is higher than that in low-yielding sows, indicating that miR-214-3p may be involved in sow fertility. However, the functions and mechanisms of miR-214-3p on GCs are unclear. This study focuses on miR-214-3p in terms of the effects on GCs proliferation and estradiol synthesis. Results Our findings revealed that miR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine GCs. MiR-214-3p can increase the percentage of S-phase cells, the number of EdU labeled positive cells, and cell viability. However, E2 concentration was reduced after miR-214-3p agomir treatment. We also found that miR-214-3p up-regulates the expression of cell cycle genes including cell cycle protein B (Cyclin B), cell cycle protein D (Cyclin D), cell cycle protein E (Cyclin E), and cyclin-dependent kinase 4 (CDK4) at the transcription and translation levels, but down-regulates the mRNA and protein levels of cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 family 19 subfamily A member 1 (CYP19A1), and steroidogenic acute regulatory protein (StAR) (i.e., the key enzymes in estradiol synthesis). On-line prediction, bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blot results showed that the target genes of miR-214-3p in proliferation and estradiol synthesis are Mfn2 and NR5A1, respectively. Conclusions Our findings suggest that miR-214-3p plays an important role in the functional regulation of porcine GCs and therefore may be a target gene for regulating follicular development.
Collapse
Affiliation(s)
- Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jingjing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yamei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yankun Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100 China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|