1
|
Liang X, Yang H, Hu P, Gan Z, Long S, Wang S, Yang X. Decoding the possible mechanism of action of Paeoniflorigenone in combating Aflatoxin B1-induced liver cancer: an investigation using network pharmacology and bioinformatics analysis. Toxicol Mech Methods 2024:1-13. [PMID: 39350351 DOI: 10.1080/15376516.2024.2411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Moutan cortex has demonstrated antitumor properties attributed to its bioactive compound Paeoniflorigenone (PA). Nevertheless, there is limited research on the efficacy of PA in the prevention and treatment of hepatocellular carcinoma (HCC). We aimed to investigate the potential pharmacological mechanisms of PA in the treatment of Aflatoxin B1 (AFB1)-induced hepatocarcinogenesis using network pharmacology and bioinformatics analysis approaches. Through various databases and bioinformatics analysis approaches, 34 shared targets were identified as potential candidate genes for PA in fighting liver cancer caused by AFB1. Pathway analysis revealed involvement in cell cycle, HIF-1, and Rap1 pathways. A risk assessment model was developed using LASSO regression, showing an association between the identified genes and the tumor immune microenvironment. The genes within the risk model were found to be linked to the immune response in liver cancer. Molecular docking studies indicated that PA interacts with its targets through hydrogen bonding and hydrophobic interactions. This study provides insights into the possible mechanisms of PA in liver cancer treatment and offers a predictive model for assessing the risk level of individuals with liver cancer. These findings have significant implications for the therapeutic strategies in managing liver cancer patients.
Collapse
Affiliation(s)
- Xiaocong Liang
- Interventional Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Huiling Yang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Pengrong Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ziyan Gan
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Shunqin Long
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Sumei Wang
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xiaobing Yang
- Oncology Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
2
|
Yu TY, Zhan ZJ, Lin Q, Huang ZH. Computed tomography-based radiomics predicts the fibroblast-related gene EZH2 expression level and survival of hepatocellular carcinoma. World J Clin Cases 2024; 12:5568-5582. [PMID: 39188617 PMCID: PMC11269978 DOI: 10.12998/wjcc.v12.i24.5568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer. The primary treatment strategies for HCC currently include liver transplantation and surgical resection. However, these methods often yield unsatisfactory outcomes, leading to a poor prognosis for many patients. This underscores the urgent need to identify and evaluate novel therapeutic targets that can improve the prognosis and survival rate of HCC patients. AIM To construct a radiomics model that can accurately predict the EZH2 expression in HCC. METHODS Gene expression, clinical parameters, HCC-related radiomics, and fibroblast-related genes were acquired from public databases. A gene model was developed, and its clinical efficacy was assessed statistically. Drug sensitivity analysis was conducted with identified hub genes. Radiomics features were extracted and machine learning algorithms were employed to generate a radiomics model related to the hub genes. A nomogram was used to illustrate the prognostic significance of the computed Radscore and the hub genes in the context of HCC patient outcomes. RESULTS EZH2 and NRAS were independent predictors for prognosis of HCC and were utilized to construct a predictive gene model. This model demonstrated robust performance in diagnosing HCC and predicted an unfavorable prognosis. A negative correlation was observed between EZH2 expression and drug sensitivity. Elevated EZH2 expression was linked to poorer prognosis, and its diagnostic value in HCC surpassed that of the risk model. A radiomics model, developed using a logistic algorithm, also showed superior efficiency in predicting EZH2 expression. The Radscore was higher in the group with high EZH2 expression. A nomogram was constructed to visually demonstrate the significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients. CONCLUSION EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy. A radiomics model, developed using a logistic algorithm, efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.
Collapse
Affiliation(s)
- Ting-Yu Yu
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Ze-Juan Zhan
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Qi Lin
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Zhen-Huan Huang
- Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| |
Collapse
|
3
|
Wang J, Liang S, Zhu D, Ma X, Peng Q, Wang G, Wang Y, Chen T, Wu M, Hu TY, Zhang Y. Valence-Change MnO 2-Coated Arsenene Nanosheets as a Pin1 Inhibitor for Hepatocellular Carcinoma Treatment. J Am Chem Soc 2024; 146:21568-21582. [PMID: 39051165 PMCID: PMC11311233 DOI: 10.1021/jacs.4c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) can prevent effective treatment, emphasizing the need for more effective therapies. Herein, we employed arsenene nanosheets coated with manganese dioxide and polyethylene glycol (AMPNs) for the degradation of Pin1, which is universally overexpressed in HCC. By employing an "AND gate", AMPNs exhibited responsiveness toward excessive glutathione and hydrogen peroxide within the tumor microenvironment, thereby selectively releasing AsxOy to mitigate potential side effects of As2O3. Notably, AMPNs induced the suppressing Pin1 expression while simultaneously upregulation PD-L1, thereby eliciting a robust antitumor immune response and enhancing the efficacy of anti-PD-1/anti-PD-L1 therapy. The combination of AMPNs and anti-PD-1 synergistically enhanced tumor suppression and effectively induced long-lasting immune memory. This approach did not reveal As2O3-associated toxicity, indicating that arsenene-based nanotherapeutic could be employed to amplify the response rate of anti-PD-1/anti-PD-L1 therapy to improve the clinical outcomes of HCC patients and potentially other solid tumors (e.g., breast cancer) that are refractory to anti-PD-1/anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Jingguo Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Siping Liang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Dongdong Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Xiaocao Ma
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Guanzhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| | - Yuting Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tiantian Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
| | - Tony Y Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanqing Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangdong 510006, China
| |
Collapse
|
4
|
Bai Y, Yuan Z, Yuan S, He Z. Recent advances of Pin1 inhibitors as potential anticancer agents. Bioorg Chem 2024; 144:107171. [PMID: 38325131 DOI: 10.1016/j.bioorg.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.
Collapse
Affiliation(s)
- Yiru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
5
|
Kuang T, Zhang L, Chai D, Chen C, Wang W. Construction of a T-cell exhaustion-related gene signature for predicting prognosis and immune response in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:5751-5774. [PMID: 37354485 PMCID: PMC10333082 DOI: 10.18632/aging.204830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with a rising prevalence worldwide. Immunotherapy has been shown to improve treatment outcomes for HCC. We aimed to construct a T-cell exhaustion-related gene prognostic model (TEXPM) for HCC and to elucidate the immunologic characteristics and advantages of immunotherapy in T-cell exhaustion-Related Gene-defined HCC groups. METHODS Single-cell RNA sequencing data were used in conjunction with TCGA Differentially expressed genes (DEGs) to screen for T-cell exhaustion-Related Genes (TEXGs) for subsequent evaluation. Using univariate Cox regression analysis and LASSO regression analysis, five genes (FTL, GZMA, CD14, NPC2, and IER3) were subsequently selected for the construction of a TEXPM. Then, we evaluated the immunologic characteristics and advantages of immunotherapy in groups identified by TEXPM. RESULTS The TEXPM was formed with FTL, GZMA, CD14, NPC2, and IER3. The results of the training and validation team studies were consistent, with the low TEXPM group surviving longer than the high TEXPM group (P < 0.001). Multivariate Cox regression analysis demonstrated that TEXPM (HR: 2.347, 95%CI: 1.844-2.987; HR: 2.172, 95% CI: 1.689-2.793) was an independent prognostic variable for HCC patients. The low-TEXPM group was linked to active immunity, less aggressive phenotypes, strong infiltration of CD8+ T cells, CD4 + T cells, and M1 macrophages, and a better response to ICI treatment. A high TEXPM group, on the other hand, was associated with suppressive immunity, more aggressive phenotypes, a significant infiltration of B cells, M0 macrophages, and M2 macrophages, and a reduced response to ICI treatment. FTL is an independent prognostic variable in HCC patients and the knockdown of FTL can affect the biological behavior of hepatocellular carcinoma cells. CONCLUSIONS TEXPM is a promising prognostic biomarker connected to the immune system. Differentiating immunological and molecular features and predicting patient outcomes may be facilitated by TEXPM grouping. Furthermore, the expression of FTL was found to be an independent prognostic factor for HCC. Knockdown of FTL significantly inhibited proliferation, migration, and invasive activity in liver cancer cells.
Collapse
Affiliation(s)
- Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Zadran B, Sudhindar PD, Wainwright D, Bury Y, Luli S, Howarth R, McCain MV, Watson R, Huet H, Palinkas F, Berlinguer-Palmini R, Casement J, Mann DA, Oakley F, Lunec J, Reeves H, Faulkner GJ, Shukla R. Impact of retrotransposon protein L1 ORF1p expression on oncogenic pathways in hepatocellular carcinoma: the role of cytoplasmic PIN1 upregulation. Br J Cancer 2023; 128:1236-1248. [PMID: 36707636 PMCID: PMC10050422 DOI: 10.1038/s41416-023-02154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Molecular characterisation of hepatocellular carcinoma (HCC) is central to the development of novel therapeutic strategies for the disease. We have previously demonstrated mutagenic consequences of Long-Interspersed Nuclear Element-1 (LINE1s/L1) retrotransposition. However, the role of L1 in HCC, besides somatic mutagenesis, is not well understood. METHODS We analysed L1 expression in the TCGA-HCC RNAseq dataset (n = 372) and explored potential relationships between L1 expression and clinical features. The findings were confirmed by immunohistochemical (IHC) analysis of an independent human HCC cohort (n = 48) and functional mechanisms explored using in vitro and in vivo model systems. RESULTS We observed positive associations between L1 and activated TGFβ-signalling, TP53 mutation, alpha-fetoprotein and tumour invasion. IHC confirmed a positive association between pSMAD3, a surrogate for TGFβ-signalling status, and L1 ORF1p (P < 0.0001, n = 32). Experimental modulation of L1 ORF1p levels revealed an influence of L1 ORF1p on key hepatocarcinogenesis-related pathways. Reduction in cell migration and invasive capacity was observed upon L1 ORF1 knockdown, both in vitro and in vivo. In particular, L1 ORF1p increased PIN1 cytoplasmic localisation. Blocking PIN1 activity abrogated L1 ORF1p-induced NF-κB-mediated inflammatory response genes while further activated TGFβ-signalling confirming differential alteration of PIN1 activity in cellular compartments by L1 ORF1p. DISCUSSION Our data demonstrate a causal link between L1 ORF1p and key oncogenic pathways mediated by PIN1, presenting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Bassier Zadran
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Praveen Dhondurao Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Yvonne Bury
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Saimir Luli
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Misti Vanette McCain
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Robyn Watson
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Hannah Huet
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Fanni Palinkas
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | - John Casement
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Derek A Mann
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Fiona Oakley
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Helen Reeves
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS foundation, Newcastle-upon-Tyne, UK
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, NE1 8ST, UK.
| |
Collapse
|
8
|
Li W, Gong H, Fu Y, Sun J, Wang Y. Novel pH-sensitive nanoparticles based on prodrug strategy to delivery All-Trans Retinoic Acid for breast cancer. Colloids Surf B Biointerfaces 2022; 219:112838. [PMID: 36148708 DOI: 10.1016/j.colsurfb.2022.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Developing chemotherapy with nanoparticle-based prodrugs provides promising strategies for improving the safety and delivery of anti-cancer drugs therapeutics and effective cancer treatment. Herein, we developed a pH-sensitive prodrug delivery system (All-Trans-Retinoic Acid (ATRA) grafted poly (β-amino esters) (PBAE) copolymers, ATRA-g-PBAE) for delivery of ATRA with some physicochemical and biological properties. The in vitro release of ATRA-g-PBAE prodrug nanoparticles (PNPs) was sustained-release and pH-sensitive. The cytotoxicity and uptake of different preparations in vitro were evaluated on MCF-7 cells at pH 7.4 and 5.5. The carrier PBAE had no cytotoxicity, and ATRA-g-PBAE PNPs could significantly inhibit cell growth at pH 5.5. MCF-7 cells treated with Cy5.5 grafted PBAE (Cy5.5-PBAE) showed stronger fluorescence signals at pH 5.5. Meanwhile, ATRA-g-PBAE PNPs entered the cell via a clathrin-mediated endocytic pathway. Subsequently, PBAE protonation facilitated the escape of PNPs from the lysosome and released the drug. ATRA-g-PBAE seems promising as a novel pH-sensitive prodrug to overcome the limitations of ATRA for breast cancer therapy.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - HeXin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
9
|
Kanna M, Nakatsu Y, Yamamotoya T, Encinas J, Ito H, Okabe T, Asano T, Sakaguchi T. Roles of peptidyl prolyl isomerase Pin1 in viral propagation. Front Cell Dev Biol 2022; 10:1005325. [PMID: 36393854 PMCID: PMC9642847 DOI: 10.3389/fcell.2022.1005325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Peptidyl-prolyl isomerase (PPIase) is a unique enzyme that promotes cis-trans isomerization of a proline residue of a target protein. Peptidyl-prolyl cis-trans isomerase NIMA (never in mitosis A)-interacting 1 (Pin1) is a PPIase that binds to the pSer/pThr-Pro motif of target proteins and isomerizes their prolines. Pin1 has been reported to be involved in cancer development, obesity, aging, and Alzheimer's disease and has been shown to promote the growth of several viruses including SARS-CoV-2. Pin1 enhances the efficiency of viral infection by promoting uncoating and integration of the human immunodeficiency virus. It has also been shown that Pin1 interacts with hepatitis B virus proteins and participates in viral replication. Furthermore, Pin1 promotes not only viral proliferation but also the progression of virus-induced tumorigenesis. In this review, we focus on the effects of Pin1 on the proliferation of various viruses and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Machi Kanna
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | - Yusuke Nakatsu
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takeshi Yamamotoya
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | | | - Hisanaka Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Tomoichiro Asano
- Department of Biomedical Chemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Japan
| |
Collapse
|
10
|
Chen Y, Hou X, Pang J, Yang F, Li A, Lin S, Lin N, Lee TH, Liu H. The role of peptidyl-prolyl isomerase Pin1 in neuronal signaling in epilepsy. Front Mol Neurosci 2022; 15:1006419. [PMID: 36304997 PMCID: PMC9592815 DOI: 10.3389/fnmol.2022.1006419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common symptom of many neurological disorders and can lead to neuronal damage that plays a major role in seizure-related disability. The peptidyl-prolyl isomerase Pin1 has wide-ranging influences on the occurrence and development of neurological diseases. It has also been suggested that Pin1 acts on epileptic inhibition, and the molecular mechanism has recently been reported. In this review, we primarily focus on research concerning the mechanisms and functions of Pin1 in neurons. In addition, we highlight the significance and potential applications of Pin1 in neuronal diseases, especially epilepsy. We also discuss the molecular mechanisms by which Pin1 controls synapses, ion channels and neuronal signaling pathways to modulate epileptic susceptibility. Since neurotransmitters and some neuronal signaling pathways, such as Notch1 and PI3K/Akt, are vital to the nervous system, the role of Pin1 in epilepsy is discussed in the context of the CaMKII-AMPA receptor axis, PSD-95-NMDA receptor axis, NL2/gephyrin-GABA receptor signaling, and Notch1 and PI3K/Akt pathways. The effect of Pin1 on the progression of epilepsy in animal models is discussed as well. This information will lead to a better understanding of Pin1 signaling pathways in epilepsy and may facilitate development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Chen
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojun Hou
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Jiao Pang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Yang
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Angcheng Li
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Suijin Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Na Lin
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hekun Liu
- Institute of Basic Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Hekun Liu,
| |
Collapse
|
11
|
Lee YM, Teoh DEJ, Yeung K, Liou YC. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Front Cell Dev Biol 2022; 10:956071. [PMID: 36111342 PMCID: PMC9468764 DOI: 10.3389/fcell.2022.956071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied. Our understanding of Pin1 in cancer also led to the development of cancer therapeutic drugs targeting Pin1, with some currently in clinical trial phases. However, identifying a Pin1-specific drug with good cancer therapeutic effect remains elusive, thus leading to the continued efforts in Pin1 research. The importance of Pin1 is highlighted by the presence of Pin1 orthologs across various species: from vertebrates to invertebrates and Kingdom Animalia to Plantae. Among these Pin1 orthologs, their sequence and structural similarity demonstrate the presence of conservation. Moreover, their similar functionality between species further highlights the conservancy of Pin1. As researchers continue to unlock the mysteries of Pin1 in various diseases, using different Pin1 models might shed light on how to better target Pin1 for disease therapeutics. This review aims to highlight the various Pin1 orthologs in numerous species and their divergent functional roles. We will examine their sequence and structural similarities and discuss their functional similarities and uniqueness to demonstrate the interconnectivity of Pin1 orthologs in multiple diseases.
Collapse
|
12
|
Resveratrol attenuates atherosclerotic endothelial injury through the Pin1/Notch1 pathway. Toxicol Appl Pharmacol 2022; 446:116047. [DOI: 10.1016/j.taap.2022.116047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 01/09/2023]
|
13
|
Antitumor Effect of Pseudolaric Acid B Involving Regulation of Notch1/Akt Signaling Response in Human Hepatoma Cell In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5353686. [PMID: 35747382 PMCID: PMC9213129 DOI: 10.1155/2022/5353686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Background Liver cancer, particularly hepatocellular carcinoma (HCC), is the fourth leading cause of cancer-related death worldwide. Sorafenib is a crucial drug for the treatment of advanced HCC, but it is difficult to meet the challenge of increasing clinical demands due to its severe side effects and drug resistance. Hence, development of novel antitumor drugs is urged. Previous studies showed that pseudolaric acid B (PAB) could reduce the expression of protein kinase B (PKB/Akt), a downstream effector of Notch signaling, facilitating cell apoptosis in HCC. The disruption of Notch signaling was verified to exacerbate malignant progression and drug resistance, however, the antitumor effect of PAB on Notch signaling in HCC remains unclear. Thus, this study aims to investigate the anti-HCC effect of PAB in association with the regulation of Notch1/Akt signaling. Methods CCK-8 assay and transwell assay were used to examine the cell proliferation and invasion in Huh7 cells after treatment with PAB and a Notch inhibitor DAPT. Moreover, the cell cycle of Huh7 cells after treatment with PAB was analyzed using flow cytometry. Finally, the changes of Notch1, Jagged1, Hes1, and Akt expression at the protein and mRNA level in Notch1/Akt signaling in Huh7 cells after treatment with PAB and DAPT were analyzed using immunofluorescence assay and real-time qPCR. Results The proliferation rate of Huh7 cells exposed to PAB of 0.5, 1, 2, 4, 8, 10, 20, 40, 80, 100, and 200 μmol/L revealed a time-and dose-dependent decrease in vitro, showing cell cycle arrest at G2/M phase (P < 0.05). Furthermore, compared with the untreated group, at the concentration of 40 μmol/L, the proliferation rate and invasion rate of Huh7 cells in PAB, DAPT, and PAB-DAPT combination (PAB + DAPT) group were significantly decreased (P < 0.05), but the PAB + DAPT showed no synergistic antiproliferation and anti-invasion effect in comparison with PAB treatment alone (P > 0.05). In addition, compared with the untreated group, PAB and DAPT alone significantly downregulated the expression of Notch1, Jagged1, Hes1, Akt mRNA, or/and protein in Huh7 cells (P < 0.05), but there was no significant difference in synergistic downregulated effect between the PAB + DAPT group and the PAB group (P > 0.05). Conclusion PAB can suppress proliferation and invasion of HCC cells through downregulating the expression of Notch1/Akt signaling protein and mRNA, and may be a potential novel antitumor drug candidate for the clinical treatment of HCC in the future.
Collapse
|
14
|
Xu Z, Peng B, Liang Q, Chen X, Cai Y, Zeng S, Gao K, Wang X, Yi Q, Gong Z, Yan Y. Construction of a Ferroptosis-Related Nine-lncRNA Signature for Predicting Prognosis and Immune Response in Hepatocellular Carcinoma. Front Immunol 2021; 12:719175. [PMID: 34603293 PMCID: PMC8484522 DOI: 10.3389/fimmu.2021.719175] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death process that plays important regulatory roles in the occurrence and development of cancers, including hepatocellular carcinoma (HCC). Moreover, the molecular events surrounding aberrantly expressed long non-coding RNAs (lncRNAs) that drive HCC initiation and progression have attracted increasing attention. However, research on ferroptosis-related lncRNA prognostic signature in patients with HCC is still lacking. In this study, the association between differentially expressed lncRNAs and ferroptosis-related genes, in 374 HCC and 50 normal hepatic samples obtained from The Cancer Genome Atlas (TCGA), was evaluated using Pearson's test, thereby identifying 24 ferroptosis-related differentially expressed lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression model were used to construct and validate a prognostic risk score model from both TCGA training dataset and GEO testing dataset (GSE40144). A nine-lncRNA-based signature (CTD-2033A16.3, CTD-2116N20.1, CTD-2510F5.4, DDX11-AS1, LINC00942, LINC01224, LINC01231, LINC01508, and ZFPM2-AS1) was identified as the ferroptosis-related prognostic model for HCC, independent of multiple clinicopathological parameters. In addition, the HCC patients were divided into high-risk and low-risk groups according to the nine-lncRNA prognostic signature. The gene set enrichment analysis enrichment analysis revealed that the lncRNA-based signature might regulate the HCC immune microenvironment by interfering with tumor necrosis factor α/nuclear factor kappa-B, interleukin 2/signal transducers and activators of transcription 5, and cytokine/cytokine receptor signaling pathways. The infiltrating immune cell subtypes, such as resting memory CD4(+) T cells, follicular helper T cells, regulatory T cells, and M0 macrophages, were all significantly different between the high-risk group and the low-risk group as indicated in Spearman's correlation analysis. Moreover, a substantial increase in the expression of B7H3 immune checkpoint molecule was found in the high-risk group. Our findings provided a promising insight into ferroptosis-related lncRNAs in HCC and a personalized prediction tool for prognosis and immune responses in patients.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kewa Gao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Serum Peptidyl-prolyl Cis-trans Isomerase NIMA-interacted 1 (Pin1) as a Non-invasive Marker for Liver Fibrosis due to Chronic Hepatitis C Virus. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Hepatitis C virus (HCV) may remain asymptomatic or cause liver fibrosis and cirrhosis. Objectives: We aimed to assess the relationship between serum peptidyl-prolyl cis-trans isomerase NIMA-interacted 1 (Pin1) levels and liver fibrosis due to HCV. Methods: Serum samples of successive patients with HCV genotype 1b and healthy volunteers were collected, and Pin1 levels were measured using ELISA kits. Liver fibrosis stages were calculated by the Ishak Scoring System and subdivided into two groups; stage < 3 (mild fibrosis) and ≥ 3 (advanced fibrosis). Correlation and area under receiver operating characteristics (AUROC) analysis were used to investigate the relationship between Pin1 and clinical and histopathological properties of HCV infection. Results: Ninety-four patients with HCV and 47 age- and sex-matched volunteers were included. The median age of the participants was 52, and 55% of whom were females. The mean (SD) of Pin1 serum level was significantly higher in the HCV group compared with healthy volunteers (33.94 (21.15) vs. 26.82 (8.85) pg/mL, respectively, P = 0.007). Seventy-seven (82%) and 17 (18%) of the participants showed mild and advanced fibrosis, respectively. Pin1 serum levels were significantly lower in the mild compared with advanced fibrosis group (29 (17.88) vs. 43.59 (7.98) pg/mL, respectively, P < 0.001). We found a significantly positive correlation between Pin1 serum level and liver fibrosis stage (r = 0.71, P < 0.001). The cut off of 33.04 pg/mL of Pin1 serum level showed the best sensitivity (100%) and specificity (68.4%) (AUROC = 0.81 [95% confidence interval: 0.72 - 0.90], P < 0.001) for distinguishing advanced from mild liver fibrosis. Conclusions: Serum Pin1 level may be a relevant marker for predicting liver fibrosis in HCV infected patients.
Collapse
|
16
|
Wang L, Zhou Y, Chen D, Lee TH. Peptidyl-Prolyl Cis/Trans Isomerase Pin1 and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:355. [PMID: 32500074 PMCID: PMC7243138 DOI: 10.3389/fcell.2020.00355] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia with cognitive decline. The neuropathology of AD is characterized by intracellular aggregation of neurofibrillary tangles consisting of hyperphosphorylated tau and extracellular deposition of senile plaques composed of beta-amyloid peptides derived from amyloid precursor protein (APP). The peptidyl-prolyl cis/trans isomerase Pin1 binds to phosphorylated serine or threonine residues preceding proline and regulates the biological functions of its substrates. Although Pin1 is tightly regulated under physiological conditions, Pin1 deregulation in the brain contributes to the development of neurodegenerative diseases, including AD. In this review, we discuss the expression and regulatory mechanisms of Pin1 in AD. We also focus on the molecular mechanisms by which Pin1 controls two major proteins, tau and APP, after phosphorylation and their signaling cascades. Moreover, the major impact of Pin1 deregulation on the progression of AD in animal models is discussed. This information will lead to a better understanding of Pin1 signaling pathways in the brain and may provide therapeutic options for the treatment of AD.
Collapse
Affiliation(s)
- Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|