1
|
Liu C, Li J, Chen G, He R, Lin R, Huang Z, Li J, Du X, Lv X. A cohesin-associated gene score may predict immune checkpoint blockade in hepatocellular carcinoma. FEBS Open Bio 2022; 12:1857-1874. [PMID: 36052535 PMCID: PMC9527596 DOI: 10.1002/2211-5463.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Stromal antigen 1 (STAG1), a component of cohesion, is overexpressed in various cancers, but it is unclear whether it has a role in the transcriptional regulation of hepatocellular carcinoma (HCC). To test this hypothesis, here, we screened global HCC datasets and performed multiscale embedded gene co-expression network analysis to identify the potential functional modules of differentially expressed STAG1 co-expressed genes. The putative transcriptional targets of STAG1 were identified using chromatin immunoprecipitation followed by high-throughput DNA sequencing. The cohesin-associated gene score (CAGS) was quantified using the The Cancer Genome Atlas HCC cohort and single-sample gene set enrichment analysis. Distinct cohesin-associated gene patterns were identified by calculating the euclidean distance of each patient. We assessed the potential ability of the CAGS in predicting immune checkpoint blockade (ICB) treatment response using IMvigor210 and GSE78220 cohorts. STAG1 was upregulated in 3313 HCC tissue samples compared with 2692 normal liver tissue samples (standard mean difference = 0.54). A total of three cohesin-associated gene patterns were identified, where cluster 2 had a high TP53 mutated rate and a poor survival outcome. Low CAGS predicted a significant survival advantage but presaged poor immunotherapy response. Differentially expressed STAG1 co-expression genes were enriched in the mitotic cell cycle, lymphocyte activation, and blood vessel development. PDS5A and PDGFRA were predicted as the downstream transcriptional targets of STAG1. In summary, STAG1 is significantly upregulated in global HCC tissue samples and may participate in blood vessel development and the mitotic cell cycle. A cohesin-associated gene scoring system may have potential to predict the ICB response.
Collapse
Affiliation(s)
- Cui‐Zhen Liu
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jian‐Di Li
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rong‐Quan He
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rui Lin
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jian‐Jun Li
- Department of General SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiu‐Fang Du
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiao‐Ping Lv
- Department of GastroenterologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
2
|
Su PR, You L, Beerens C, Bezstarosti K, Demmers J, Pabst M, Kanaar R, Hsu CC, Chien MP. Microscopy-based single-cell proteomic profiling reveals heterogeneity in DNA damage response dynamics. CELL REPORTS METHODS 2022; 2:100237. [PMID: 35784653 PMCID: PMC9243628 DOI: 10.1016/j.crmeth.2022.100237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/01/2022]
Abstract
Single-cell proteomics has the potential to decipher tumor heterogeneity, and a method like single-cell proteomics by mass spectrometry (SCoPE-MS) allows profiling several tens of single cells for >1,000 proteins per cell. This method, however, cannot link the proteome of individual cells with phenotypes of interest. Here, we developed a microscopy-based functional single-cell proteomic-profiling technology, called FUNpro, to address this. FUNpro enables screening, identification, and isolation of single cells of interest in a real-time fashion, even if the phenotypes are dynamic or the cells of interest are rare. We applied FUNpro to proteomically profile a newly identified small subpopulation of U2OS osteosarcoma cells displaying an abnormal, prolonged DNA damage response (DDR) after ionizing radiation (IR). With this, we identified the PDS5A protein contributing to the abnormal DDR dynamics and helping the cells survive after IR.
Collapse
Affiliation(s)
- Pin-Rui Su
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Li You
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Cecile Beerens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Core Facility, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Demmers
- Proteomics Core Facility, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
3
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in Cohesin Function and Human Disease. Int J Mol Sci 2021; 22:ijms22115868. [PMID: 34070827 PMCID: PMC8198109 DOI: 10.3390/ijms22115868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Precocious dissociation of sisters 5 (PDS5) is an associate protein of cohesin that is conserved from yeast to humans. It acts as a regulator of the cohesin complex and plays important roles in various cellular processes, such as sister chromatid cohesion, DNA damage repair, gene transcription, and DNA replication. Vertebrates have two paralogs of PDS5, PDS5A and PDS5B, which have redundant and unique roles in regulating cohesin functions. Herein, we discuss the molecular characteristics and functions of PDS5, as well as the effects of its mutations in the development of diseases and their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Debananda Pati
- Correspondence: ; Tel.: +1-832-824-4575; Fax: +1-832-825-4651
| |
Collapse
|