1
|
Siva Sankari G, James R, Payva F, Sivaramakrishnan V, Vineeth Kumar TV, Kanchi S, Santhy KS. Computational analysis of sodium-dependent phosphate transporter SLC20A1/PiT1 gene identifies missense variations C573F, and T58A as high-risk deleterious SNPs. J Biomol Struct Dyn 2024; 42:4072-4086. [PMID: 37286379 DOI: 10.1080/07391102.2023.2218939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
SLC20A1/PiT1 is a sodium-dependent inorganic phosphate transporter, initially recognized as the retroviral receptor for Gibbon Ape Leukemia Virus in humans. SNPs in SLC20A1 is associated with Combined Pituitary Hormone Deficiency and Sodium Lithium Counter transport. Using in silico techniques, we have screened the nsSNPs for their deleterious effect on the structure and function of SLC20A1. Screening with sequence and structure-based tools on 430 nsSNPs, filtered 17 nsSNPs which are deleterious. To evaluate the role of these SNPs, protein modeling and MD simulations were performed. A comparative analysis of model generated with SWISS-MODEL and AlphaFold shows that many residues are in the disallowed region of Ramachandran plot. Since SWISS-MODEL structure has a 25-residue deletion, the AlphaFold structure was used to perform MD simulation for equilibration and structure refinement. Further, to understand perturbation of energetics, we performed in silico mutagenesis and ΔΔG calculation using FoldX on MD refined structures, which yielded SNPs that are neutral (3), destabilizing (12) and stabilizing (2) on protein structure. Furthermore, to elucidate the impact of SNPs on structure, we performed MD simulations to discern the changes in RMSD, Rg, RMSF and LigPlot of interacting residues. RMSF profiles of representative SNPs revealed that A114V (neutral) and T58A (positive) were more flexible & C573F (negative) was more rigid compared to wild type, which is also reflected in the changes in number of local interacting residues in LigPlot and ΔΔG. Taken together, our results show that SNPs can lead to structural perturbations and impact the function of SLC20A1 with potential implications for disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Siva Sankari
- Centre for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, India
| | - Remya James
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Febby Payva
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | | | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | - K S Santhy
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Li ZP, Li J, Li TL, Song ZY, Gong XZ. Uropathogenic Escherichia coli infection: innate immune disorder, bladder damage, and Tailin Fang II. Front Cell Infect Microbiol 2024; 14:1322119. [PMID: 38638825 PMCID: PMC11024302 DOI: 10.3389/fcimb.2024.1322119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) activates innate immune response upon invading the urinary tract, whereas UPEC can also enter bladder epithelial cells (BECs) through interactions with fusiform vesicles on cell surfaces and subsequently escape from the vesicles into the cytoplasm to establish intracellular bacterial communities, finally evading the host immune system and leading to recurrent urinary tract infection (RUTI). Tailin Fang II (TLF-II) is a Chinese herbal formulation composed of botanicals that has been clinically proven to be effective in treating urinary tract infection (UTI). However, the underlying therapeutic mechanisms remain poorly understood. Methods Network pharmacology analysis of TLF-II was conducted. Female Balb/C mice were transurethrally inoculated with UPEC CFT073 strain to establish the UTI mouse model. Levofloxacin was used as a positive control. Mice were randomly divided into four groups: negative control, UTI, TLF-II, and levofloxacin. Histopathological changes in bladder tissues were assessed by evaluating the bladder organ index and performing hematoxylin-eosin staining. The bacterial load in the bladder tissue and urine sample of mice was quantified. Activation of the TLR4-NF-κB pathway was investigated through immunohistochemistry and western blotting. The urinary levels of interleukin (IL)-1β and IL-6 and urine leukocyte counts were monitored. We also determined the protein expressions of markers associated with fusiform vesicles, Rab27b and Galectin-3, and levels of the phosphate transporter protein SLC20A1. Subsequently, the co-localization of Rab27b and SLC20A1 with CFT073 was examined using confocal fluorescence microscopy. Results Data of network pharmacology analysis suggested that TLF-II could against UTI through multiple targets and pathways associated with innate immunity and inflammation. Additionally, TLF-II significantly attenuated UPEC-induced bladder injury and reduced the bladder bacterial load. Meanwhile, TLF-II inhibited the expression of TLR4 and NF-κB on BECs and decreased the urine levels of IL-1β and IL-6 and urine leukocyte counts. TLF-II reduced SLC20A1 and Galectin-3 expressions and increased Rab27b expression. The co-localization of SLC20A1 and Rab27b with CFT073 was significantly reduced in the TLF-II group. Conclusion Collectively, innate immunity and bacterial escape from fusiform vesicles play important roles in UPEC-induced bladder infections. Our findings suggest that TLF-II combats UPEC-induced bladder infections by effectively mitigating bladder inflammation and preventing bacterial escape from fusiform vesicles into the cytoplasm. The findings suggest that TLF-II is a promising option for treating UTI and reducing its recurrence.
Collapse
Affiliation(s)
| | | | | | | | - Xue-zhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Stegmann JD, Kalanithy JC, Dworschak GC, Ishorst N, Mingardo E, Lopes FM, Ho YM, Grote P, Lindenberg TT, Yilmaz Ö, Channab K, Seltzsam S, Shril S, Hildebrandt F, Boschann F, Heinen A, Jolly A, Myers K, McBride K, Bekheirnia MR, Bekheirnia N, Scala M, Morleo M, Nigro V, Torella A, Pinelli M, Capra V, Accogli A, Maitz S, Spano A, Olson RJ, Klee EW, Lanpher BC, Jang SS, Chae JH, Steinbauer P, Rieder D, Janecke AR, Vodopiutz J, Vogel I, Blechingberg J, Cohen JL, Riley K, Klee V, Walsh LE, Begemann M, Elbracht M, Eggermann T, Stoppe A, Stuurman K, van Slegtenhorst M, Barakat TS, Mulhern MS, Sands TT, Cytrynbaum C, Weksberg R, Isidori F, Pippucci T, Severi G, Montanari F, Kruer MC, Bakhtiari S, Darvish H, Reutter H, Hagelueken G, Geyer M, Woolf AS, Posey JE, Lupski JR, Odermatt B, Hilger AC. Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies. NPJ Genom Med 2024; 9:18. [PMID: 38429302 PMCID: PMC10907620 DOI: 10.1038/s41525-024-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
Collapse
Affiliation(s)
- Jil D Stegmann
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany.
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany.
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Department of Neuropediatrics, University Hospital Bonn, Bonn, 53127, Germany
| | - Nina Ishorst
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Enrico Mingardo
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Yee Mang Ho
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Phillip Grote
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Tobias T Lindenberg
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Öznur Yilmaz
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Khadija Channab
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Heinen
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angad Jolly
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Kim McBride
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Mir Reza Bekheirnia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132, Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Manuela Morleo
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Vincenzo Nigro
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Gaslini, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Silvia Maitz
- Medical Genetics Service, Oncology Department of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | | | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Genomics Medicine, Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Philipp Steinbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Ida Vogel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer L Cohen
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kacie Riley
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Victoria Klee
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Laurence E Walsh
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Arzu Stoppe
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Kyra Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maureen S Mulhern
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Tristan T Sands
- Division of Child Neurology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Cheryl Cytrynbaum
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Federica Isidori
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Severi
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Montanari
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Heiko Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Division Neonatology and Pediatric Intensive Care, Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin Odermatt
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Alina C Hilger
- Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Wang L, Liang C, Zheng N, Yang C, Yan S, Wang X, Zuo Z, He C. Kidney injury contributes to edema of zebrafish larvae caused by quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168420. [PMID: 37963533 DOI: 10.1016/j.scitotenv.2023.168420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Edema represents a notable outcome in fishes exposed to aquatic pollutants, yet the underlying etiology remains inadequately understood. This investigation delves into the etiological factors of edema formation in 7 days post fertilization (dpf) zebrafish larvae following their exposure to InP/ZnS quantum dots (QDs), which was chosen as a prototypical edema inducer. Given the fundamental role of the kidney in osmoregulation, we used transgenic zebrafish lines featuring fluorescent protein labeling of the glomerulus, renal tubule, and blood vessels, in conjunction with histopathological scrutiny. We identified the pronounced morphological and structural aberrations within the pronephros. By means of tissue mass spectrometry imaging and hyperspectral microscopy, we discerned the accumulation of InP/ZnS QDs in the pronephros. Moreover, InP/ZnS QDs impeded the renal clearance capacity of the pronephros, as substantiated by diminished uptake of FITC-dextran. InP/ZnS QDs also disturbed the expression levels of marker genes associated with kidney development and osmoregulatory function at the earlier time points, which preceded the onset of edema. These results suggest that impaired fluid clearance most likely resulting from pronephros injury contributes to the emergence of zebrafish edema. Briefly, our study provides a perspective: the kidney developmental injury induced by exogenous substances may regulate edema in a zebrafish model.
Collapse
Affiliation(s)
- Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixin Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Ramos-Brossier M, Romeo-Guitart D, Lanté F, Boitez V, Mailliet F, Saha S, Rivagorda M, Siopi E, Nemazanyy I, Leroy C, Moriceau S, Beck-Cormier S, Codogno P, Buisson A, Beck L, Friedlander G, Oury F. Slc20a1 and Slc20a2 regulate neuronal plasticity and cognition independently of their phosphate transport ability. Cell Death Dis 2024; 15:20. [PMID: 38195526 PMCID: PMC10776841 DOI: 10.1038/s41419-023-06292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
In recent years, primary familial brain calcification (PFBC), a rare neurological disease characterized by a wide spectrum of cognitive disorders, has been associated to mutations in the sodium (Na)-Phosphate (Pi) co-transporter SLC20A2. However, the functional roles of the Na-Pi co-transporters in the brain remain still largely elusive. Here we show that Slc20a1 (PiT-1) and Slc20a2 (PiT-2) are the most abundant Na-Pi co-transporters expressed in the brain and are involved in the control of hippocampal-dependent learning and memory. We reveal that Slc20a1 and Slc20a2 are differentially distributed in the hippocampus and associated with independent gene clusters, suggesting that they influence cognition by different mechanisms. Accordingly, using a combination of molecular, electrophysiological and behavioral analyses, we show that while PiT-2 favors hippocampal neuronal branching and survival, PiT-1 promotes synaptic plasticity. The latter relies on a likely Otoferlin-dependent regulation of synaptic vesicle trafficking, which impacts the GABAergic system. These results provide the first demonstration that Na-Pi co-transporters play key albeit distinct roles in the hippocampus pertaining to the control of neuronal plasticity and cognition. These findings could provide the foundation for the development of novel effective therapies for PFBC and cognitive disorders.
Collapse
Affiliation(s)
- Mariana Ramos-Brossier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Perception & Memory Unit, F-75015, Paris, France
- MedInsights, 6 rue de l'église, F-02810, Veuilly la Poterie, France
| | - Manon Rivagorda
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Eleni Siopi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR, 3633, Paris, France
| | - Christine Leroy
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France
- Platform for Neurobehavioural and metabolism, Structure Fédérative de Recherche Necker, INSERM, US24/CNRS UAR, 3633, Paris, France
- Institute of Genetic Diseases, Imagine, 75015, Paris, France
| | - Sarah Beck-Cormier
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, F-44000, Nantes, France.
| | - Gérard Friedlander
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 6, F-75015, Paris, France.
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015, Paris, France.
| |
Collapse
|
6
|
Köllges R, Stegmann J, Schneider S, Waffenschmidt L, Fazaal J, Breuer K, Hilger AC, Dworschak GC, Mingardo E, Rösch W, Hofmann A, Neissner C, Ebert AK, Stein R, Younsi N, Hirsch-Koch K, Schmiedeke E, Zwink N, Jenetzky E, Thiele H, Ludwig KU, Reutter H. Exome Survey and Candidate Gene Re-Sequencing Identifies Novel Exstrophy Candidate Genes and Implicates LZTR1 in Disease Formation. Biomolecules 2023; 13:1117. [PMID: 37509153 PMCID: PMC10377188 DOI: 10.3390/biom13071117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The bladder exstrophy-epispadias complex (BEEC) is a spectrum of congenital abnormalities that involves the abdominal wall, the bony pelvis, the urinary tract, the external genitalia, and, in severe cases, the gastrointestinal tract as well. METHODS Herein, we performed an exome analysis of case-parent trios with cloacal exstrophy (CE), the most severe form of the BEEC. Furthermore, we surveyed the exome of a sib-pair presenting with classic bladder exstrophy (CBE) and epispadias (E) only. Moreover, we performed large-scale re-sequencing of CBE individuals for novel candidate genes that were derived from the current exome analysis, as well as for previously reported candidate genes within the CBE phenocritical region, 22q11.2. RESULTS The exome survey in the CE case-parent trios identified two candidate genes harboring de novo variants (NR1H2, GKAP1), four candidate genes with autosomal-recessive biallelic variants (AKR1B10, CLSTN3, NDST4, PLEKHB1) and one candidate gene with suggestive uniparental disomy (SVEP1). However, re-sequencing did not identify any additional variant carriers in these candidate genes. Analysis of the affected sib-pair revealed no candidate gene. Re-sequencing of the genes within the 22q11.2 CBE phenocritical region identified two highly conserved frameshift variants that led to early termination in two independent CBE males, in LZTR1 (c.978_985del, p.Ser327fster6) and in SLC7A4 (c.1087delC, p.Arg363fster68). CONCLUSIONS According to previous studies, our study further implicates LZTR1 in CBE formation. Exome analysis-derived candidate genes from CE individuals may not represent a frequent indicator for other BEEC phenotypes and warrant molecular analysis before their involvement in disease formation can be assumed.
Collapse
Affiliation(s)
- Ricarda Köllges
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
| | - Jil Stegmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Sophia Schneider
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
| | - Lea Waffenschmidt
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
| | - Julia Fazaal
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
| | - Katinka Breuer
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
| | - Alina C. Hilger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gabriel C. Dworschak
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Department of Neuropediatrics, University Hospital Bonn, 53127 Bonn, Germany
| | - Enrico Mingardo
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Wolfgang Rösch
- Department of Pediatric Urology, Clinic St. Hedwig, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Aybike Hofmann
- Department of Pediatric Urology, Clinic St. Hedwig, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Claudia Neissner
- Department of Pediatric Urology, Clinic St. Hedwig, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Anne-Karolin Ebert
- Department of Urology and Pediatric Urology, University Hospital Ulm, 89081 Ulm, Germany
| | - Raimund Stein
- Center for Pediatric, Adolescent and Reconstructive Urology, University Medical Center Mannheim, University Heidelberg, 69117 Mannheim, Germany
| | - Nina Younsi
- Center for Pediatric, Adolescent and Reconstructive Urology, University Medical Center Mannheim, University Heidelberg, 69117 Mannheim, Germany
| | - Karin Hirsch-Koch
- Division of Pediatric Urology, Department of Urology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Eberhard Schmiedeke
- Clinic for Pediatric Surgery and Pediatric Urology, Klinikum Bremen-Mitte, 28205 Bremen, Germany
| | - Nadine Zwink
- Department of Child and Adolescent Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ekkehart Jenetzky
- Department of Child and Adolescent Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50923 Cologne, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (R.K.)
| | - Heiko Reutter
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Kolvenbach CM, Dworschak GC, Rieke JM, Woolf AS, Reutter H, Odermatt B, Hilger AC. Modelling human lower urinary tract malformations in zebrafish. Mol Cell Pediatr 2023; 10:2. [PMID: 36977792 PMCID: PMC10050536 DOI: 10.1186/s40348-023-00156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Advances in molecular biology are improving our understanding of the genetic causes underlying human congenital lower urinary tract (i.e., bladder and urethral) malformations. This has recently led to the identification of the first disease-causing variants in the gene BNC2 for isolated lower urinary tract anatomical obstruction (LUTO), and of WNT3 and SLC20A1 as genes implicated in the pathogenesis of the group of conditions called bladder-exstrophy-epispadias complex (BEEC). Implicating candidate genes from human genetic data requires evidence of their influence on lower urinary tract development and evidence of the found genetic variants' pathogenicity. The zebrafish (Danio rerio) has many advantages for use as a vertebrate model organism for the lower urinary tract. Rapid reproduction with numerous offspring, comparable anatomical kidney and lower urinary tract homology, and easy genetic manipulability by Morpholino®-based knockdown or CRISPR/Cas editing are among its advantages. In addition, established marker staining for well-known molecules involved in urinary tract development using whole-mount in situ hybridization (WISH) and the usage of transgenic lines expressing fluorescent protein under a tissue-specific promoter allow easy visualization of phenotypic abnormalities of genetically modified zebrafish. Assays to examine the functionality of the excretory organs can also be modeled in vivo with the zebrafish. The approach of using these multiple techniques in zebrafish not only enables rapid and efficient investigation of candidate genes for lower urinary tract malformations derived from human data, but also cautiously allows transferability of causality from a non-mammalian vertebrate to humans.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany.
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gabriel C Dworschak
- Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Neuropediatrics, University Hospital Bonn, Bonn, Germany
| | - Johanna M Rieke
- Department of Pediatrics, Children's Hospital Medical Center, University Hospital Bonn, Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Heiko Reutter
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Odermatt
- Institute of Anatomy, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alina C Hilger
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Nordenskjöld A, Arkani S, Pettersson M, Winberg J, Cao J, Fossum M, Anderberg M, Barker G, Holmdahl G, Lundin J. Copy number variants suggest different molecular pathways for the pathogenesis of bladder exstrophy. Am J Med Genet A 2023; 191:378-390. [PMID: 36349425 PMCID: PMC10100507 DOI: 10.1002/ajmg.a.63031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022]
Abstract
Bladder exstrophy is a rare congenital malformation leaving the urinary bladder open in the midline of the abdomen at birth. There is a clear genetic background with chromosome aberrations, but so far, no consistent findings apart from 22q11-duplications detected in about 2%-3% of all patients. Some genes are implicated like the LZTR1, ISL1, CELSR3, and the WNT3 genes, but most are not explained molecularly. We have performed chromosomal microarray analysis on a cohort of 140 persons born with bladder exstrophy to look for submicroscopic chromosomal deletions and duplications. Pathogenic or possibly pathogenic microdeletions or duplications were found in 16 patients (11.4%) and further 9 with unknown significance. Two findings were in regions linked to known syndromes, two findings involved the same gene (MCC), and all other findings were unique. A closer analysis suggests a few gene networks that are involved in the pathogenesis of bladder exstrophy; the WNT-signaling pathway, the chromosome 22q11 region, the RIT2 and POU families, and involvement of the Golgi apparatus. Bladder exstrophy is a rare malformation and is reported to be associated with several chromosome aberrations. Our data suggest involvement of some specific molecular pathways.
Collapse
Affiliation(s)
- Agneta Nordenskjöld
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Pediatric Surgery, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samara Arkani
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Urology, Danderyds Hospital, Danderyd, Sweden
| | - Maria Pettersson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Winberg
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jia Cao
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Fossum
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Copenhagen University, Righospitalet, København, Denmark
| | - Magnus Anderberg
- Department of Pediatric Surgery, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gillian Barker
- Department of Pediatric Surgery, Uppsala Academic Hospital, Uppsala, Sweden
| | - Gundela Holmdahl
- Department of Women's and Children's Health, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Pediatric Surgery, Astrid Lindgren Children Hospital, Karolinska University Hospital, Stockholm, Sweden.,Sahlgrenska Academy, Women's and Children's Health, Gothenburg, Sweden.,Department of Pediatric Surgery, Queen Silvia's Children's Hospital, Gothenburg, Sweden
| | - Johanna Lundin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Weaver NE, Healy A, Wingert RA. gldc Is Essential for Renal Progenitor Patterning during Kidney Development. Biomedicines 2022; 10:biomedicines10123220. [PMID: 36551976 PMCID: PMC9776136 DOI: 10.3390/biomedicines10123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The glycine cleavage system (GCS) is a complex located on the mitochondrial membrane that is responsible for regulating glycine levels and contributing one-carbon units to folate metabolism. Congenital mutations in GCS components, such as glycine decarboxylase (gldc), cause an elevation in glycine levels and the rare disease, nonketotic hyperglycinemia (NKH). NKH patients suffer from pleiotropic symptoms including seizures, lethargy, mental retardation, and early death. Therefore, it is imperative to fully elucidate the pathological effects of gldc dysfunction and glycine accumulation during development. Here, we describe a zebrafish model of gldc deficiency that recapitulates phenotypes seen in humans and mice. gldc deficient embryos displayed impaired fluid homeostasis suggesting renal abnormalities, as well as aberrant craniofacial morphology and neural development defects. Whole mount in situ hybridization (WISH) revealed that gldc transcripts were highly expressed in the embryonic kidney, as seen in mouse and human repository data, and that formation of several nephron segments was disrupted in gldc deficient embryos, including proximal and distal tubule populations. These kidney defects were caused by alterations in renal progenitor populations, revealing that the proper function of Gldc is essential for the patterning of this organ. Additionally, further analysis of the urogenital tract revealed altered collecting duct and cloaca morphology in gldc deficient embryos. Finally, to gain insight into the molecular mechanisms underlying these disruptions, we examined the effects of exogenous glycine treatment and observed analogous renal and cloacal defects. Taken together, these studies indicate for the first time that gldc function serves an essential role in regulating renal progenitor development by modulating glycine levels.
Collapse
|
10
|
Kolvenbach CM, Felger T, Schierbaum L, Thiffault I, Pastinen T, Szczepańska M, Zaniew M, Adamczyk P, Bayat A, Yilmaz Ö, Lindenberg TT, Thiele H, Hildebrandt F, Hinderhofer K, Moog U, Hilger AC, Sullivan B, Bartik L, Gnyś P, Grote P, Odermatt B, Reutter HM, Dworschak GC. X-linked variations in SHROOM4are implicated in congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems. J Med Genet 2022; 60:587-596. [PMID: 36379543 DOI: 10.1136/jmg-2022-108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
Abstract
BackgroundSHROOM4is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) inSHROOM4have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system.MethodsHere, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse andknockdown(KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role ofSHROOM4during embryonic development.ResultsIn this study, we identified putative disease-causing SNVs and CNVs inSHROOM4in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showedShroom4expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-typeSHROOM4mRNA and morpholino.ConclusionThe identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggestSHROOM4as a developmental gene for different organ systems.
Collapse
|
11
|
A genome-wide association study with tissue transcriptomics identifies genetic drivers for classic bladder exstrophy. Commun Biol 2022; 5:1203. [PMID: 36352089 PMCID: PMC9646906 DOI: 10.1038/s42003-022-04092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility. A genome-wide association study on classic bladder exstrophy reveals eight genome-wide significant loci, most of which contained genes expressed in embryonic developmental bladder stages.
Collapse
|
12
|
Yang YF, Li WG, Wen PP, Jia PP, Li YZ, Li TY, Pei DS. Exposure to Sri Lanka's local groundwater in a CKDu prevalent area causes kidney damage in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106276. [PMID: 36041360 DOI: 10.1016/j.aquatox.2022.106276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
How local groundwater induces chronic kidney disease of unknown etiology (CKDu) in Sri Lanka is still elusive. This study aims to elucidate the impacts of Sri Lanka's local groundwater in a CKDu prevalent area and reveal the possible pathogenic mechanism of CKDu using zebrafish models. The drinking water from the local underground well in Vavuniya was sampled and the water quality parameters including Na+, Mg2+, K+, Ca2+, Cl-, NO3-, SO42-, and F- were analyzed. Then, local groundwater exposure to zebrafish larvae and 293T cells was performed, and water with high hardness and fluoride was prepared as parallel groups. Our result showed that exposure to Sri Lanka's local groundwater caused developmental toxicity, kidney damage, and pronephric duct obstruction as well as abnormal behavior in zebrafish. Similar results were also found after exposure to water with high hardness and fluoride in zebrafish. Further, the expression levels of marker genes related to renal development and functions (foxj1a, dync2h1, pkd2, gata3, and slc20a1) were significantly altered, which is also confirmed in the 293T cells. Taken together, those results indicated that Sri Lanka's local groundwater in a CKDu prevalent area could cause kidney damage, implying that high water hardness and fluorine might be the inducible environmental factors for the etiological cause of CKDu.
Collapse
Affiliation(s)
- Yi-Fan Yang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Ping-Ping Wen
- College of Life Science, Henan Normal University, Xinxiang 453007, China; School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Pan-Pan Jia
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Yong-Zhi Li
- Chongqing University, Chongqing 400044, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Tian-Yun Li
- Chongqing University, Chongqing 400044, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
13
|
Beaman GM, Woolf AS, Lopes FM, Guo SA, Harkness JR, Cervellione RM, Keene D, Mushtaq I, Clatworthy MR, Newman WG. Narrowing the chromosome 22q11.2 locus duplicated in bladder exstrophy-epispadias complex. J Pediatr Urol 2022; 18:362.e1-362.e8. [PMID: 35491304 DOI: 10.1016/j.jpurol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/15/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Bladder exstrophy-epispadias complex (BEEC) comprises a spectrum of anterior midline congenital malformations, involving the lower urinary tract. BEEC is usually sporadic, but families with more than one affected member have been reported, and a twin concordance study supported a genetic contribution to pathogenesis. Moreover, diverse chromosomal aberrations have been reported in a small subset of individuals with BEEC. The commonest are 22q11.2 microduplications, identified in approximately 3% of BEEC index cases. OBJECTIVES We aimed to refine the chromosome 22q11.2 locus, and to determine whether the encompassed genes are expressed in normal developing and mature human urinary bladders. RESULTS Using DNA from an individual with CBE, the 22q11.2 duplicated locus was refined by identification of a maternally inherited 314 kb duplication (chr22:21,147,293-21,461,017), as depicted in this image. Moreover, the eight protein coding genes within the locus were found to be expressed during normal developing and mature bladders. To determine whether duplications in any of these individual genes were associated with CBE, we undertook copy number analyses in 115 individuals with CBE without duplications of the whole locus. No duplications of individual genes were found. DISCUSSION The current study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes are expressed in human bladders both during antenatal development and postnatally. Nevertheless, the precise biological explanation as to why duplication of the phenocritical region of 22q11 confers increased susceptibility to BEEC remains to be determined. The fact that individuals with CBE without duplications of the whole locus also lacked duplication of any of the individual genes suggests that in individuals with BEEC and duplication of the 22q11.2 locus altered dosage of more than one gene may be important in BEEC etiology. CONCLUSIONS The study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes within this locus are expressed in human bladders.
Collapse
Affiliation(s)
- Glenda M Beaman
- Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Filipa M Lopes
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, United Kingdom; Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge CB2 0AW, United Kingdom; Cellular Genetics, Wellcome Sanger Institute, Hinxton CB10 1RQ, United Kingdom
| | - J Robert Harkness
- Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Raimondo M Cervellione
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - David Keene
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Imran Mushtaq
- Department of Paediatric Urology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge CB2 0AW, United Kingdom; Cellular Genetics, Wellcome Sanger Institute, Hinxton CB10 1RQ, United Kingdom; Department of Paediatric Urology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - William G Newman
- Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
14
|
Reutter H, Holmdahl G. Genetic Counseling for Bladder Exstrophy-Epispadias Complex. Eur J Pediatr Surg 2021; 31:468-471. [PMID: 34911128 DOI: 10.1055/s-0041-1740336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bladder exstrophy-epispadias complex (BEEC) represents the severe end of the uro-rectal malformation spectrum and has profound impact on continence, sexual, and renal function. Treatment of BEEC is primarily surgical, and the main goals are safe closure of the abdominal wall, urinary continence while preserving renal function, and adequate cosmetic and functional genital reconstruction. Psychosocial and psychosexual outcomes and adequate health-related quality of life depend on long-term multidisciplinary care. The overall outcome is now considered very positive and affected individuals usually lead self-determined and independent lives with the desire to start their own families later in life. Certainty about the risk of recurrence and the provision of information about the current state of knowledge about the identified genetic causes with high penetrance will have an impact on family planning for healthy parents with an affected child and for affected individuals themselves. This review addresses this information and presents the current state of knowledge.
Collapse
Affiliation(s)
- Heiko Reutter
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatric and Adolescent Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gundela Holmdahl
- Unit of Pediatric Oncology and Pediatric Surgery, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Chen J, Li G, Lian J, Ma N, Huang Z, Li J, Wen Z, Zhang W, Zhang Y. Slc20a1b is essential for hematopoietic stem/progenitor cell expansion in zebrafish. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2186-2201. [PMID: 33751369 DOI: 10.1007/s11427-020-1878-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 10/21/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are able to self-renew and can give rise to all blood lineages throughout their lifetime, yet the mechanisms regulating HSPC development have yet to be discovered. In this study, we characterized a hematopoiesis defective zebrafish mutant line named smu07, which was obtained from our previous forward genetic screening, and found the HSPC expansion deficiency in the mutant. Positional cloning identified that slc20a1b, which encodes a sodium phosphate cotransporter, contributed to the smu07 blood phenotype. Further analysis demonstrated that mutation of slc20a1b affects HSPC expansion through cell cycle arrest at G2/M phases in a cell-autonomous manner. Our study shows that slc20a1b is a vital regulator for HSPC proliferation in zebrafish early hematopoiesis and provides valuable insights into HSPC development.
Collapse
Affiliation(s)
- Jiakui Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaofei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Junwei Lian
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ning Ma
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Yiyue Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Lopes FM, Woolf AS, Roberts NA. Envisioning treating genetically-defined urinary tract malformations with viral vector-mediated gene therapy. J Pediatr Urol 2021; 17:610-620. [PMID: 34312114 DOI: 10.1016/j.jpurol.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations. Historically, the pathogenesis of human urinary tract malformations has been obscure. It is now established that some such individuals have defined monogenic causes for their disease. In health, the implicated genes are expressed in either differentiating urinary tract smooth muscle cells, urothelial cells or peripheral nerve cells supplying the bladder. The phenotypes arising from mutations of these genes include megabladder, congenital functional bladder outflow obstruction, and vesicoureteric reflux. We contend that these genetic and molecular insights can now inform the design of novel therapies involving viral vector-mediated gene transfer. Indeed, this technology is being used to treat individuals with early onset monogenic disease outside the urinary tract, such as spinal muscular atrophy. Moreover, it has been contended that human fetal gene therapy, which may be necessary to ameliorate developmental defects, could become a reality in the coming decades. We suggest that viral vector-mediated gene therapies should first be tested in existing mouse models with similar monogenic and anatomical aberrations as found in people with urinary tract malformations. Indeed, gene transfer protocols have been successfully pioneered in newborn and fetal mice to treat non-urinary tract diseases. If similar strategies were successful in animals with urinary tract malformations, this would pave the way for personalized and potentially curative treatments for people with urinary tract malformations.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| |
Collapse
|
17
|
Schierbaum LM, Schneider S, Herms S, Sivalingam S, Fabian J, Reutter H, Weber S, Merz WM, Tkaczyk M, Miklaszewska M, Sikora P, Szmigielska A, Krzemien G, Zachwieja K, Szczepanska M, Taranta-Janusz K, Kroll P, Polok M, Zaniew M, Hilger AC. Genome-Wide Survey for Microdeletions or -Duplications in 155 Patients with Lower Urinary Tract Obstructions (LUTO). Genes (Basel) 2021; 12:genes12091449. [PMID: 34573432 PMCID: PMC8468665 DOI: 10.3390/genes12091449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/28/2023] Open
Abstract
Lower urinary tract obstruction (LUTO) is, in most cases, caused by anatomical blockage of the bladder outlet. The most common form are posterior urethral valves (PUVs), a male-limited phenotype. Here, we surveyed the genome of 155 LUTO patients to identify disease-causing CNVs. Raw intensity data were collected for CNVs detected in LUTO patients and 4.392 healthy controls using CNVPartition, QuantiSNP and PennCNV. Overlapping CNVs between patients and controls were discarded. Additional filtering implicated CNV frequency in the database of genomic variants, gene content and final visual inspection detecting 37 ultra-rare CNVs. After, prioritization qPCR analysis confirmed 3 microduplications, all detected in PUV patients. One microduplication (5q23.2) occurred de novo in the two remaining microduplications found on chromosome 1p36.21 and 10q23.31. Parental DNA was not available for segregation analysis. All three duplications comprised 11 coding genes: four human specific lncRNA and one microRNA. Three coding genes (FBLIM1, SLC16A12, SNCAIP) and the microRNA MIR107 have previously been shown to be expressed in the developing urinary tract of mouse embryos. We propose that duplications, rare or de novo, contribute to PUV formation, a male-limited phenotype.
Collapse
Affiliation(s)
- Luca M. Schierbaum
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany; (L.M.S.); (S.S.); (S.H.); (J.F.); (H.R.)
| | - Sophia Schneider
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany; (L.M.S.); (S.S.); (S.H.); (J.F.); (H.R.)
| | - Stefan Herms
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany; (L.M.S.); (S.S.); (S.H.); (J.F.); (H.R.)
- Human Genomics Research Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Sugirthan Sivalingam
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany;
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Julia Fabian
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany; (L.M.S.); (S.S.); (S.H.); (J.F.); (H.R.)
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany; (L.M.S.); (S.S.); (S.H.); (J.F.); (H.R.)
- Department of Neonatology and Pediatric Intensive Care, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Stefanie Weber
- Department of Pediatrics, University Hospital Marburg, 35033 Marburg, Germany;
| | - Waltraut M. Merz
- Department of Obstetrics and Prenatal Medicine, University of Bonn, 53127 Bonn, Germany;
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother’s Memorial Hospital Research Institute of Lodz, 93-428 Łódź, Poland;
- Department of Pediatrics, Cardiology and Immunology, Medical University of Łódź, 93-428 Łódź, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, 31-007 Krakow, Poland; (M.M.); (K.Z.)
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology Medical University of Lublin, 20-059 Lublin, Poland;
| | - Agnieszka Szmigielska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (G.K.)
| | - Grazyna Krzemien
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (G.K.)
| | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, 31-007 Krakow, Poland; (M.M.); (K.Z.)
| | - Maria Szczepanska
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Katarzyna Taranta-Janusz
- Department of Pediatrics and Nephrology, Medical University of Białystok, 15-089 Białystok, Poland;
| | - Pawel Kroll
- Neurourology Unit, Pediatric Surgery and Urology Clinic, 61-701 Poznań, Poland;
- Neurourology Unit, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Marcin Polok
- Department of Pediatric Surgery and Urology, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Alina C. Hilger
- Institute of Human Genetics, University Hospital of Bonn, 53127 Bonn, Germany; (L.M.S.); (S.S.); (S.H.); (J.F.); (H.R.)
- Department of Neonatology and Pediatric Intensive Care, University Hospital Erlangen, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
18
|
Dai L, Li J, Xie L, Wang W, Lu Y, Xie M, Huang J, Shen K, Yang H, Pei C, Zhao Y, Zhang W. A Biallelic Frameshift Mutation in Nephronectin Causes Bilateral Renal Agenesis in Humans. J Am Soc Nephrol 2021; 32:1871-1879. [PMID: 34049960 PMCID: PMC8455264 DOI: 10.1681/asn.2020121762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/03/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Bilateral renal agenesis (BRA) is a lethal con genital anomaly caused by the failure of normal development of both kidneys early in embryonic development. Oligohydramnios on fetal ultrasonography reveals BRA. Although the exact causes are not clear, BRA is associated with mutations in many renal development genes. However, molecular diagnostics do not pick up many clinical patients. Nephronectin (NPNT) may be a candidate protein for widening diagnosis. It is essential in kidney development, and knockout of Npnt in mice frequently leads to kidney agenesis or hypoplasia. METHODS A consanguineous Han family experienced three cases of induced abortion in the second trimester of pregnancy, due to suspected BRA. Whole-exome sequencing (WES)-based homozygosity mapping detected underlying genetic factors, and a knock-in mouse model confirmed the renal agenesis phenotype. RESULTS WES and evaluation of homozygous regions in II:3 and II:4 revealed a pathologic homozygous frameshift variant in NPNT (NM_001184690:exon8:c.777dup/p.Lys260*), which leads to a premature stop in the next codon. The truncated NPNT protein exhibited decreased expression, as confirmed in vivo by the overexpression of WT and mutated NPNT. A knock-in mouse model homozygous for the detected Npnt mutation replicated the BRA phenotype. CONCLUSIONS A biallelic loss-of-function NPNT mutation causing an autosomal recessive form of BRA in humans was confirmed by the corresponding phenotype of knock-in mice. Our results identify a novel genetic cause of BRA, revealing a new target for genetic diagnosis, prenatal diagnosis, and preimplantation diagnosis for families with BRA.
Collapse
Affiliation(s)
- Lei Dai
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Jingzhi Li
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Liangqun Xie
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Weinan Wang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Yang Lu
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Mingkun Xie
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Kuifang Shen
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Hui Yang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Chenlin Pei
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Yanhua Zhao
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| |
Collapse
|
19
|
Beaman GM, Cervellione RM, Keene D, Reutter H, Newman WG. The Genomic Architecture of Bladder Exstrophy Epispadias Complex. Genes (Basel) 2021; 12:genes12081149. [PMID: 34440323 PMCID: PMC8391660 DOI: 10.3390/genes12081149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The bladder exstrophy-epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.
Collapse
Affiliation(s)
- Glenda M. Beaman
- Division of Evolution and Genomic Sciences, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Raimondo M. Cervellione
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (R.M.C.); (D.K.)
| | - David Keene
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (R.M.C.); (D.K.)
| | - Heiko Reutter
- Department of Neonatology and Paediatric Intensive Care, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - William G. Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Correspondence:
| |
Collapse
|