1
|
Urs AP, Goda C, Kulkarni R. Remodeling of the bone marrow microenvironment during acute myeloid leukemia progression. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:63. [PMID: 39118939 PMCID: PMC11304419 DOI: 10.21037/atm-23-1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 08/10/2024]
Abstract
Hematopoiesis requires a complex interplay between the hematopoietic stem and progenitor cells and the cells of the bone marrow microenvironment (BMM). The BMM is heterogeneous, with different regions having distinct cellular, molecular, and metabolic composition and function. Studies have shown that this niche is disrupted in patients with acute myeloid leukemia (AML), which plays a crucial role in disease progression. This review provides a comprehensive overview of the components of vascular and endosteal niches and the molecular mechanisms by which they regulate normal hematopoiesis. We also discuss how these niches are modified in the context of AML, into a disease-promoting niche and how the modified niches in turn regulate AML blast survival and proliferation. We focus on mechanisms of modifications in structural and cellular components of the bone marrow (BM) niche by the AML cells and its impact on leukemic progression and patient outcome. Finally, we also discuss mechanisms by which the altered BM niche protects AML blasts from treatment agents, thereby causing therapy resistance in AML patients. We also summarize ongoing clinical trials that target various BM niche components in the treatment of AML patients. Hence, the BM niche represents a promising target to treat AML and promote normal hematopoiesis.
Collapse
Affiliation(s)
- Amog P. Urs
- The Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Chinmayee Goda
- The Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rohan Kulkarni
- The Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Miller AB, Rodriguez FH, Langenbucher A, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. Commun Biol 2024; 7:483. [PMID: 38643279 PMCID: PMC11032325 DOI: 10.1038/s42003-024-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Scodellaro C, Pina RR, Ferreira FC, Sanjuan-Alberte P, Fernandes TG. Unlocking the Potential of Stem Cell Microenvironments In Vitro. Bioengineering (Basel) 2024; 11:289. [PMID: 38534563 DOI: 10.3390/bioengineering11030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The field of regenerative medicine has recently witnessed groundbreaking advancements that hold immense promise for treating a wide range of diseases and injuries. At the forefront of this revolutionary progress are stem cells. Stem cells typically reside in specialized environments in vivo, known as microenvironments or niches, which play critical roles in regulating stem cell behavior and determining their fate. Therefore, understanding the complex microenvironments that surround stem cells is crucial for advancing treatment options in regenerative medicine and tissue engineering applications. Several research articles have made significant contributions to this field by exploring the interactions between stem cells and their surrounding niches, investigating the influence of biomechanical and biochemical cues, and developing innovative strategies for tissue regeneration. This review highlights the key findings and contributions of these studies, shedding light on the diverse applications that may arise from the understanding of stem cell microenvironments, thus harnessing the power of these microenvironments to transform the landscape of medicine and offer new avenues for regenerative therapies.
Collapse
Affiliation(s)
- Chiara Scodellaro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Raquel R Pina
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
4
|
Petrella F, Cassina EM, Libretti L, Pirondini E, Raveglia F, Tuoro A. Mesenchymal Stromal Cell Therapy for Thoracic Surgeons: An Update. J Pers Med 2023; 13:1632. [PMID: 38138859 PMCID: PMC10744666 DOI: 10.3390/jpm13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells are undifferentiated cells presenting extensive self-renewal features and the ability to differentiate "in vitro" and "in vivo" into a range of lineage cells, like chondrogenic, osteogenic and adipogenic lineages when cultured in specific inducing media. Two major domains of clinical applications of stem cells in thoracic surgery have been investigated: regenerative medicine, which is a section of translational research in tissue engineering focusing on the replacement, renewal or regeneration of cells, tissues and organs to re-establish damaged physiologic functions; drug loading and delivery, representing a new branch proposing stem cells as carriers to provide selected districts with anti-cancer agents for targeted treatments.
Collapse
Affiliation(s)
- Francesco Petrella
- Department of Thoracic Surgery, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy; (E.M.C.); (L.L.); (E.P.); (F.R.); (A.T.)
| | | | | | | | | | | |
Collapse
|
5
|
Campanile M, Bettinelli L, Cerutti C, Spinetti G. Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research. Front Cardiovasc Med 2023; 10:1261849. [PMID: 37915743 PMCID: PMC10616801 DOI: 10.3389/fcvm.2023.1261849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.
Collapse
Affiliation(s)
- Marzia Campanile
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| | - Leonardo Bettinelli
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Camilla Cerutti
- Department of Experimental Oncology, IRCCS-IEO, European Institute of Oncology, Milan, Italy
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
6
|
Miller AB, Langenbucher A, Rodriguez FH, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556043. [PMID: 37732189 PMCID: PMC10508764 DOI: 10.1101/2023.09.03.556043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Leukemias and their bone marrow microenvironment are known to undergo dynamic changes over the course of disease. However, relatively little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of leukemia cell dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Tabata H, Morita H, Kouyama K, Tohyama Y. Complement dependent TNFα production in neutrophil-like HL60 cells. Biochem Biophys Rep 2023; 34:101465. [PMID: 37125077 PMCID: PMC10130347 DOI: 10.1016/j.bbrep.2023.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Neutrophils develop in the bone marrow (BM) from hematopoietic stem cells (HSCs) through a series of progenitor cells and mature neutrophils play a critical role in the human immune system. Previous studies revealed that tumor necrosis factor α (TNFα) produced by immature neutrophils contributes to HSCs development and vascular regeneration in the BM niche. However, the precise mechanism of TNFα production in immature neutrophils remains unclear. This study aims to assess the relationship between complement C3 activation and TNFα production from immature neutrophils. We investigated the regulatory mechanism of TNFα production by complement components in neutrophil-like HL60 cells. Flow cytometric analysis showed that C3a receptor (C3aR) and C3bi receptor (CR3, Mac-1, CD11b/CD18, integrin αMβ2) are expressed on the surface of neutrophil-like HL60 cells. We found that zymosan-treated human serum leads to TNFα production in neutrophil-like HL60 cells, but not in human polymorphonuclear cells (PMNs). A C3-convertase inhibitor, compstatin suppresses TNFα production. These data suggest that the TNFα production is mediated by complement C3 activation. Furthermore, the TNFα production is enhanced by Ca2+ elevating agents, thapsigargin (TG), but is suppressed by treatment with Ca2+ chelators, EGTA, or BAPTA-AM. In addition, the soluble TNFα production is suppressed by treatment with immobilized-fibrinogen or -fibronectin. Thus, the TNFα production is enhanced by intracellular Ca2+ elevation and is negatively regulated by the interaction between the neutrophil-like HL60 cells and fibrinogen or fibronectin.
Collapse
Affiliation(s)
- Hiroyuki Tabata
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524, Japan
- Corresponding author.
| | - Hiroyuki Morita
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524, Japan
| | - Kenichi Kouyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, 670-8524, Japan
| |
Collapse
|
8
|
Zhan Q, Wang J, Zhang H, Zhang L. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. J Mol Med (Berl) 2023; 101:543-556. [PMID: 37081103 PMCID: PMC10163092 DOI: 10.1007/s00109-023-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Jing Wang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
10
|
Ragusa D, Dijkhuis L, Pina C, Tosi S. Mechanisms associated with t(7;12) acute myeloid leukaemia: from genetics to potential treatment targets. Biosci Rep 2023; 43:BSR20220489. [PMID: 36622782 PMCID: PMC9894016 DOI: 10.1042/bsr20220489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukaemia (AML), typically a disease of elderly adults, affects 8 children per million each year, with the highest paediatric incidence in infants aged 0-2 of 18 per million. Recurrent cytogenetic abnormalities contribute to leukaemia pathogenesis and are an important determinant of leukaemia classification. The t(7;12)(q36;p13) translocation is a high-risk AML subtype exclusively associated with infants and represents the second most common abnormality in this age group. Mechanisms of t(7;12) leukaemogenesis remain poorly understood. The translocation relocates the entire MNX1 gene within the ETV6 locus, but a fusion transcript is present in only half of the patients and its significance is unclear. Instead, research has focused on ectopic MNX1 expression, a defining feature of t(7;12) leukaemia, which has nevertheless failed to produce transformation in conventional disease models. Recently, advances in genome editing technologies have made it possible to recreate the t(7;12) rearrangement at the chromosomal level. Together with recent studies of MNX1 involvement using murine in vivo, in vitro, and organoid-based leukaemia models, specific investigation on the biology of t(7;12) can provide new insights into this AML subtype. In this review, we provide a comprehensive up-to-date analysis of the biological features of t(7;12), and discuss recent advances in mechanistic understanding of the disease which may deliver much-needed therapeutic opportunities to a leukaemia of notoriously poor prognosis.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Liza Dijkhuis
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
| | - Cristina Pina
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| | - Sabrina Tosi
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Kingston Lane, UB8 3PH, U.K
| |
Collapse
|
11
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|
12
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
13
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
14
|
Pendse S, Kale V, Vaidya A. The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-κB Signalling in the Mesenchymal Stromal Cells. Stem Cell Rev Rep 2022; 18:2458-2473. [PMID: 35347654 DOI: 10.1007/s12015-022-10364-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/31/2022]
Abstract
Mesenchymal stromal cells (MSCs) regulate the fate of the hematopoietic stem cells (HSCs) through both cell-cell interactions and paracrine mechanisms involving multiple signalling pathways. We have previously shown that co-culturing of HSCs with CoCl2-treated MSCs expands functional HSCs. While performing these experiments, we had observed that the growth of CoCl2-treated MSCs was significantly stunted. Here, we show that CoCl2-treated MSCs possess activated NF-κB signalling pathway, and its pharmacological inhibition significantly relieves their growth arrest. Most interestingly, we found that pharmacological inhibition of NF-κB pathway in both control and CoCl2-treated MSCs completely blocks their intercellular communication with the co-cultured hematopoietic stem and progenitor cells (HSPCs), resulting in an extremely poor output of hematopoietic cells. Mechanistically, we show that this is due to the down-regulation of adhesion molecules and various HSC-supportive factors in the MSCs. This loss of physical interaction with HSPCs could be partially restored by treating the MSCs with calcium ionophore or calmodulin, suggesting that NF-κB regulates intracellular calcium flux in the MSCs. Importantly, the HSPCs co-cultured with NF-κB-inhibited-MSCs were in a quiescent state, which could be rescued by re-culturing them with untreated MSCs. Our data underscore a critical requirement of NF-κB signalling in the MSCs in intercellular communication between HSCs and MSCs for effective hematopoiesis to occur ex vivo. Our data raises a cautionary note against excessive use of anti-inflammatory drugs targeting NF-κB.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India.
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, Maharashtra, India.
| |
Collapse
|
15
|
Mohammed SA, Kimura Y, Toku Y, Ju Y. Bioengineered PLEKHA7 nanodelivery regularly induces behavior alteration and growth retardation of acute myeloid leukemia. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100045. [PMID: 36824159 PMCID: PMC9934477 DOI: 10.1016/j.bbiosy.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most lethal leukemia with an extremely poor prognosis and high relapse rates. In leukemogenesis, adhesion abnormalities can readily guide an imbalance between hematopoietic progenitor cells and bone marrow stromal cells, altering the normal hematopoietic bone marrow microenvironment into leukemic transformation that enhances leukemic proliferation. Here, we have firstly studied the PLEKHA7 expression in leukemic cells to assess their growth capability affected by the restoration of PLEKHA7 in the cells. The efficacy of PLEKHA7-loaded cRGD-mediated PEGylated cationic lipid nanoparticles for efficient PLEKHA7 delivery in leukemic cells as well as the effect of PLEKHA7 on the regulated induction of AML behavior and growth alterations were investigated. PLEKHA7 re-expression diminished colony-forming ability and reinforced the incidence of growth retardation without apoptosis in AML cell lines. PLEKHA7 regulated the restoration of cell surface adhesion and integrity during normal homeostasis. Our findings revealed that PLEKHA7 functions as a behavior and growth modulator in AML. To our knowledge, the role of PLEKHA7 in AML had not been studied previously and our data could be exploited for further mechanistic studies and insights into altering human AML behavior and growth.
Collapse
Affiliation(s)
- Sameh A. Mohammed
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Yasuhiro Kimura
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuhki Toku
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yang Ju
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,Corresponding author at: Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
16
|
Moses JC, Dey S, Bandyopadhyay A, Agarwala M, Mandal BB. Silk-Based Bioengineered Diaphyseal Cortical Bone Unit Enclosing an Implantable Bone Marrow toward Atrophic Nonunion Grafting. Adv Healthc Mater 2022; 11:e2102031. [PMID: 34881525 DOI: 10.1002/adhm.202102031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Postnatal fracture healing of atrophic long bone diaphyseal nonunions remains a challenge for orthopedic surgeons. Paucity of autologous spongiosa has potentiated the use of tissue engineered bone grafts to improve success rates of bone marrow engraftment used in plate reosteosynthesis. Herein, the development and in vitro validation of a "sandwich-type" biofabricated diaphyseal cross-sectional unit, with an outer mechanically robust bioprinted cortical bone shell, encompassing an engineered bone marrow, are reported. Channelized silk fibroin blend sponges derived from Bombyx mori and Antheraea assama help in developing compartmentalized endosteum, exhibiting specialized osteoblasts (endosteal niche) and discontinuous endothelium (vascular niche). The cellular cross-talk between these two niches triggered via integrin-mediated cell adhesion, enables in preserving quiescence state of CD34+ /CD38- hematopoietic stem cells and their recycling in the engineered marrow. The outer cortical bone strut is developed through multimaterial microextrusion bioprinting strategy. Osteogenically primed mesenchymal stem cells-laden silk fibroin-nano-hydroxyapatite bioink is bioprinted alongside paramagnetic Fe-doped bioactive glass-polycaprolactone blend thermoplastic ink, reinforcing it for mechanical stability. Pulsed magnetic field actuation positively influences the osteogenic commitment and maturation of the bioprinted constructs via mechanotransductory route. Therefore, the assembled engineered marrow and bioprinted cortical shell hold promise as potential orthobiologic substitutes toward atrophic nonunion repairs.
Collapse
Affiliation(s)
- Joseph Christakiran Moses
- Biomaterials and Tissue Engineering Laboratory Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Souradeep Dey
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Manoj Agarwala
- GNRC Institute of Medical Sciences (formerly known as Guwahati Neurological Research Centre) Guwahati Assam 781039 India
| | - Biman B. Mandal
- Biomaterials and Tissue Engineering Laboratory Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Science and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
17
|
Ashok D, Polcik L, Dannewitz Prosseda S, Hartmann TN. Insights Into Bone Marrow Niche Stability: An Adhesion and Metabolism Route. Front Cell Dev Biol 2022; 9:798604. [PMID: 35118078 PMCID: PMC8806031 DOI: 10.3389/fcell.2021.798604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
The bone marrow microenvironment provides critical cues for hematopoietic stem cell (HSC) self-renewal and differentiation and contributes to their malignant conversion. The microenvironment comprises a complex mixture of multiple cell types, soluble factors, and extracellular matrix in specialized regions termed 'niches.' Positioning of the various cellular players within these niches depends on their repertoire of adhesion molecules and chemotactic signaling, involving integrins and chemokine receptors and the corresponding intracellular players such as kinases and GTPases. The mechanical role of adhesion is to control the strength and morphology of the cell-cell and cell-extracellular matrix contacts and thereby the energy needed for the optimal localization of cells to their surroundings. While it is clear that biomechanical adhesive bonds are energetically expensive, the crosstalk between cell adhesion and metabolic pathways in the normal and malignant microenvironment is far from understood. The metabolic profile of the various cell types within the niche includes key molecules such as AMPK, glucose, mTOR, and HIF-1α. Here, we describe our most recent understanding of how the interplay between adhesion and these metabolic components is indispensable for bone marrow niche stability. In parallel, we compare the altered crosstalk of different cell types within the bone marrow niches in hematological malignancies and propose potential therapeutic associations.
Collapse
Affiliation(s)
- Driti Ashok
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Laura Polcik
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Svenja Dannewitz Prosseda
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021; 132:129-148. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have proven their clinical relevance in stem cell transplantation to cure patients with hematological disorders. Key to their regenerative potential is their natural microenvironment - their niche - in the bone marrow (BM). Developments in the field of biomaterials enable the recreation of such environments with increasing preciseness in the laboratory. Such artificial niches help to gain a fundamental understanding of the biophysical and biochemical processes underlying the interaction of HSCs with the materials in their environment and the disturbance of this interplay during diseases affecting the BM. Artificial niches also have the potential to multiply HSCs in vitro, to enable the targeted differentiation of HSCs into mature blood cells or to serve as drug-testing platforms. In this review, we will introduce the importance of artificial niches followed by the biology and biophysics of the natural archetype. We will outline how 2D biomaterials can be used to dissect the complexity of the natural niche into individual parameters for fundamental research and how 3D systems evolved from them. We will present commonly used biomaterials for HSC research and their applications. Finally, we will highlight two areas in the field of HSC research, which just started to unlock the possibilities provided by novel biomaterials, in vitro blood production and studying the pathophysiology of the niche in vitro. With these contents, the review aims to give a broad overview of the different biomaterials applied for HSC research and to discuss their potentials, challenges and future directions in the field. STATEMENT OF SIGNIFICANCE: Hematopoietic stem cells (HSCs) are multipotent cells responsible for maintaining the turnover of all blood cells. They are routinely applied to treat patients with hematological diseases. This high clinical relevance explains the necessity of multiplication or differentiation of HSCs in the laboratory, which is hampered by the missing natural microenvironment - the so called niche. Biomaterials offer the possibility to mimic the niche and thus overcome this hurdle. The review introduces the HSC niche in the bone marrow and discusses the utility of biomaterials in creating artificial niches. It outlines how 2D systems evolved into sophisticated 3D platforms, which opened the gateway to applications such as, expansion of clinically relevant HSCs, in vitro blood production, studying niche pathologies and drug testing.
Collapse
|
19
|
Extracellular vesicles tell all: How vesicle-mediated cellular communication shapes hematopoietic stem cell biology with increasing age. Exp Hematol 2021; 101-102:7-15. [PMID: 34407444 DOI: 10.1016/j.exphem.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles containing biologically important cargo and impart regulatory changes in target cells. Despite the importance of EVs in cellular communication, there remains a gap in our understanding of how EVs influence HSC fate and, in turn, how aging and longevity are affected. This review summarizes the current literature dealing with how age-altered intercellular communication mediated by EVs influences HSC biology.
Collapse
|