1
|
Copcu HE. Autologization of Exosomes with Deparenchymized Adipose Tissue: An Innovative Approach for Regenerative Medicine and Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5982. [PMID: 39015362 PMCID: PMC11251682 DOI: 10.1097/gox.0000000000005982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
Background Among all regenerative applications developed in recent years, the use of exosomes has generated by far the greatest interest. Exosome products from allogeneic and xenogeneic sources are available on the market. A key challenge is controlling the effects of nonautologous exosomes. We hypothesized that combining exosomes with a patient's own extracellular matrix (ECM) can create "autologization," enabling control over their effects. This study aimed to provide the rationale and a guide for future research exploring the autologization of exosome applications using deparenchymized adipose tissue (DPAT). Methods DPAT adipose tissue was achieved using 1200-, 400-, and 35-micrometer blades in an ultrasharp blade system (Adinizer), and then "autologization" was achieved by combining the obtained DPAT with allogeneic exosomes. DPAT was evaluated histochemically, and exosomes were counted and analyzed with the Nanosight device. Results The DPAT process using ultrasharp blades is easily performed. DPAT obtained from adipose tissue was then combined with allogenic exosomes. It has been demonstrated histopathologically that adipocytes are eliminated in deparenchymized fat tissue, and only ECM and stromal cells remain. It has also been proven that the number of exosomes is not affected by the combination. Conclusions This study introduces two novel concepts previously unknown in the literature, "deparenchymization" and "autologization," representing an innovative approach in plastic surgery and regenerative medicine. Our novel approach enriches regenerative cells while preserving critical ECM signals, overcoming the limitations of existing isolation methods. Extensive research is still needed, but autologization using DPAT ECM holds great promise for translating exosome-based treatments into practice.
Collapse
Affiliation(s)
- H. Eray Copcu
- From the Aesthetic, Plastic and Reconstructive Surgery, G-CAT (Gene, and Tissue) Academy, Istanbul, Turkey
| |
Collapse
|
2
|
Yang J, Wang X, Zeng X, Wang R, Ma Y, Fu Z, Wan Z, Wang Z, Yang L, Chen G, Gong X. One-step stromal vascular fraction therapy in osteoarthritis with tropoelastin-enhanced autologous stromal vascular fraction gel. Front Bioeng Biotechnol 2024; 12:1359212. [PMID: 38410163 PMCID: PMC10895027 DOI: 10.3389/fbioe.2024.1359212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Background: Osteoarthritis (OA) is a debilitating degenerative joint disease, leading to significant pain and disability. Despite advancements, current regenerative therapies, such as mesenchymal stem cells (MSCs), face challenges in clinical efficacy and ethical considerations. This study aimed to evaluate the therapeutic potential of stromal vascular fraction gel (SVF-gel) in comparison to available treatments like hyaluronic acid (HA) and adipose-derived stem cells (ADSCs) and to assess the enhancement of this potential by incorporating tropoelastin (TE). Methods: We conducted a comparative laboratory study, establishing an indirect co-culture system using a Transwell assay to test the effects of HA, ADSCs, SVF-gel, and TE-SVF-gel on osteoarthritic articular chondrocytes (OACs). Chondrogenic and hypertrophic markers were assessed after a 72-hour co-culture. SVF-gel was harvested from rat subcutaneous abdominal adipose tissue, with its mechanical properties characterized. Cell viability was specifically analyzed for SVF-gel and TE-SVF-gel. The in vivo therapeutic effectiveness was further investigated in a rat model of OA, examining MSCs tracking, effects on cartilage matrix synthesis, osteophyte formation, and muscle weight changes. Results: Cell viability assays revealed that TE-SVF-gel maintained higher cell survival rates than SVF-gel. In comparison to the control, HA, and ADSCs groups, SVF-gel and TE-SVF-gel significantly upregulated the expression of chondrogenic markers COL 2, SOX-9, and ACAN and downregulated the hypertrophic marker COL 10 in OACs. The TE-SVF-gel showed further improved expression of chondrogenic markers and a greater decrease in COL 10 expression compared to SVF-gel alone. Notably, the TE-SVF-gel treated group in the in vivo OA model exhibited the most MSCs on the synovial surface, superior cartilage matrix synthesis, increased COL 2 expression, and better muscle weight recovery, despite the presence of fewer stem cells than other treatments. Discussion: The findings suggest that SVF-gel, particularly when combined with TE, provides a more effective regenerative treatment for OA by enhancing the therapeutic potential of MSCs. This combination could represent an innovative strategy that overcomes limitations of current therapies, offering a new avenue for patient treatment. Further research is warranted to explore the long-term benefits and potential clinical applications of this combined approach.
Collapse
Affiliation(s)
- Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - XueBao Zeng
- Chongqing Yan Yu Medical Beauty Clinic, Chongqing, China
| | - Rong Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanming Ma
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zu Wan
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Schipper JAM, van Laarhoven CJHCM, Schepers RH, Tuin AJ, Harmsen MC, Spijkervet FKL, Jansma J, van Dongen JA. Mechanical Fractionation of Adipose Tissue-A Scoping Review of Procedures to Obtain Stromal Vascular Fraction. Bioengineering (Basel) 2023; 10:1175. [PMID: 37892905 PMCID: PMC10604552 DOI: 10.3390/bioengineering10101175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Clinical indications for adipose tissue therapy are expanding towards a regenerative-based approach. Adipose-derived stromal vascular fraction consists of extracellular matrix and all nonadipocyte cells such as connective tissue cells including fibroblasts, adipose-derived stromal cells (ASCs) and vascular cells. Tissue stromal vascular fraction (tSVF) is obtained by mechanical fractionation, forcing adipose tissue through a device with one or more small hole(s) or cutting blades between syringes. The aim of this scoping review was to assess the efficacy of mechanical fractionation procedures to obtain tSVF. In addition, we provide an overview of the clinical, that is, therapeutic, efficacy of tSVF isolated by mechanical fraction on skin rejuvenation, wound healing and osteoarthritis. Procedures to obtain tissue stromal vascular fraction using mechanical fractionation and their associated validation data were included for comparison. For clinical outcome comparison, both animal and human studies that reported results after tSVF injection were included. We categorized mechanical fractionation procedures into filtration (n = 4), centrifugation (n = 8), both filtration and centrifugation (n = 3) and other methods (n = 3). In total, 1465 patients and 410 animals were described in the included clinical studies. tSVF seems to have a more positive clinical outcome in diseases with a high proinflammatory character such as osteoarthritis or (disturbed) wound healing, in comparison with skin rejuvenation of aging skin. Isolation of tSVF is obtained by disruption of adipocytes and therefore volume is reduced. Procedures consisting of centrifugation prior to mechanical fractionation seem to be most effective in volume reduction and thus isolation of tSVF. tSVF injection seems to be especially beneficial in clinical applications such as osteoarthritis or wound healing. Clinical application of tSVF appeared to be independent of the preparation procedure, which indicates that current methods are highly versatile.
Collapse
Affiliation(s)
- Jan Aart M. Schipper
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | | | - Rutger H. Schepers
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | - A. Jorien Tuin
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | - Marco C. Harmsen
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
| | - Fred K. L. Spijkervet
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | - Johan Jansma
- Department of Oral & Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | - Joris A. van Dongen
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands
| |
Collapse
|
4
|
Li Q, Yu H, Zhao F, Cao C, Wu T, Fan Y, Ao Y, Hu X. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303650. [PMID: 37424038 PMCID: PMC10502685 DOI: 10.1002/advs.202303650] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 07/11/2023]
Abstract
In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.
Collapse
Affiliation(s)
- Qi Li
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
- Center of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Huilei Yu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Fengyuan Zhao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Chenxi Cao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Tong Wu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yifei Fan
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Yingfang Ao
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| | - Xiaoqing Hu
- Department of Sports MedicineInstitute of Sports Medicine of Peking UniversityBeijing Key Laboratory of Sports InjuriesPeking University Third HospitalBeijing100191China
| |
Collapse
|
5
|
Zhao Y, Zhu T, Han S, Dong Y, Zhou Y, Qiao Y, Tian Y, Qiu D, Qu X. Construction of Processable Ultrastiff Hydrogel for Periarticular Fracture Strutting and Healing. Biomacromolecules 2023; 24:2075-2086. [PMID: 37018617 DOI: 10.1021/acs.biomac.2c01503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Development of bioactive bone and joint implants that offer superior mechanical properties to facilitate personalized surgical procedures remains challenging in the field of biomedical materials. As for the hydrogel, mechanical property and processability are major obstructions hampering its application as load-bearing scaffolds in orthopedics. Herein, we constructed implantable composite hydrogels with appealing processability and ultrahigh stiffness. Central to our design is the incorporation of a thixotropic composite network into an elastic polymer network via dynamic interactions to synthesize a percolation-structured double-network (DN) hydrogel with plasticity, followed by in situ strengthening and self-strengthening mechanisms for fostering the DN structure to the cojoined-network structure and subsequently mineralized-composite-network structure to harvest excellent stiffness. The ultrastiff hydrogel is shapeable and can reach a compressive modulus of 80-200 MPa together with a fracture energy of 6-10 MJ/m3, comparable to the mechanical performance of cancellous bone. Moreover, the hydrogel is cytocompatible, osteogenic, and showed almost no volume shrinkage within 28 days in simulated body fluid or culture medium. Such characteristics enabled the utility of a hydrogel in the reduction and stabilization of periarticular fracture treatment on a distal femoral AO/OTA B1 fracture rabbit model and successfully avoided the recollapse of the articular surface.
Collapse
Affiliation(s)
- Yanran Zhao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Tengjiao Zhu
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Shuai Han
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Yanlei Dong
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Yi Zhou
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Experimental Study on the Biological Outcome of Auricular Cartilage and Costal Cartilage at Different Time Periods After Autologous Cartilage Rhinoplasty. J Craniofac Surg 2023; 34:785-789. [PMID: 36168117 DOI: 10.1097/scs.0000000000009043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022] Open
Abstract
Since autologous cartilage is a good transplant material, it is widely used in various fields of clinical medicine. In this study, we collected clinical specimens obtained at different numbers of years after transplantation and used histologic staining to explore the post-transplantation changes in auricular cartilage and costal cartilage. A retrospective analysis was performed on patients who underwent primary autologous cartilage rhinoplasty and secondary rhinoplasty from 2017 to 2021, and the remaining autologous cartilage tissue after surgery was used for histologic testing. As time progressed after transplantation, the density of costal chondrocytes decreased first and then increased, while the secretion of type II collagen and extracellular matrix both decreased slightly. There was a clear boundary between the cartilage tissue and the surrounding connective tissue, and there was no ingrowth of blood vessels in the cartilage. Auricular cartilage showed a decrease in the integrity of the matrix edge. Moreover, local fibrosis was visible, and vascular ingrowth was observed at the edge of the cartilage. The content of type II collagen first increased and then decreased, and the cell secretion function was lower than that of normal chondrocytes. The results of the study suggest that the histologic outcome of elastic cartilage after transplantation is significantly different from that of hyaline cartilage. Moreover, costal cartilage was more stable than auricular cartilage after transplantation.
Collapse
|
7
|
Organoids and Their Research Progress in Plastic and Reconstructive Surgery. Aesthetic Plast Surg 2022; 47:880-891. [PMID: 36401134 DOI: 10.1007/s00266-022-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022]
Abstract
Organoids are 3D structures generated from stem cells. Their functions and physiological characteristics are similar to those of normal organs. They are used in disease mechanism research, new drug development, organ transplantation and other fields. In recent years, the application of 3D materials in plastic surgery for repairing injuries, filling, tissue reconstruction and regeneration has also been investigated. The PubMed/MEDLINE database was queried to search for animal and human studies published through July of 2022 with search terms related to Organoids, Plastic Surgery, Pluripotent Stem Cells, Bioscaffold, Skin Reconstruction, Bone and Cartilage Regeneration. This review presents stem cells, scaffold materials and methods for the construction of organoids for plastic surgery, and it summarizes their research progress in plastic surgery in recent years.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
8
|
Rodriguez-Merchan EC. Autologous and Allogenic Utilization of Stromal Vascular Fraction and Decellularized Extracellular Matrices in Orthopedic Surgery: A Scoping Review. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:827-832. [PMID: 36452418 PMCID: PMC9702025 DOI: 10.22038/abjs.2022.59635.2943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/05/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND This narrative review of the literature aims to analyze the utilization of stromal vascular fraction (SVF) and decellularized extracellular matrices (dECMs) in various pathologies related to orthopedic surgery. METHODS A literature search was carried out in PubMed on February 15, 2022, using "Stroma Vascular Fraction and Orthopedic Surgery" and "Decellularized Extracellular Matrices and Orthopedic Surgery" as keywords. A total of 278 articles were found, of which 28 papers were selected because they seemed to be the most appropriate concerning the title of the article. RESULTS The reported results have shown that intra-articular injection of SVF seems to be a safe and efficacious method for managing knee osteoarthritis (OA). Platelet-rich plasma (PRP) and SVF are safe and effective management for intractable Achilles tendinopathy in humans, although subjects treated with SVF recover earlier. There are promising results in utilizing adipose-derived mesenchymal stromal cells in chronic lateral epicondylitis of the elbow in athletes. Ready-to-use ECM/SVF gel seems to be a good therapeutic option promoting the regeneration of the articular cartilage in subjects with injuries of the cartilage. The SVF can safely be used to treat diabetic subjects suffering from chronic foot ulcers. CONCLUSION There are scarce high-quality data for utilizing cell-based approach in soft tissue injuries of the knee in athletes. Experimental studies indicate that SVF could be a new option to osseous regeneration. Other experimental studies support the utilization of dECMs as a scaffold for the regeneration of large osseous defects, cell-derived dECMs scaffolds to repair articular cartilage injuries, and utilization of xenogeneic acellular muscles to manage volumetric muscle loss where there is a lack of donor site.Intra-articular injections of SVF seems to be a safe and efficacious method for managing OA of the knee joint. Platelet-rich plasma (PRP) and SVF are safe and efficacious methods for the management of intractable Achilles tendinopathy in humans, although subjects treated with SVF recover earlier.
Collapse
|
9
|
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int J Mol Sci 2022; 23:11169. [PMID: 36232468 PMCID: PMC9570095 DOI: 10.3390/ijms231911169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Irina A. Romanova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| |
Collapse
|
10
|
林 书, 谭 科, 胡 豇, 万 仑, 王 跃. [Effectiveness of modified orthopedic robot-assisted percutaneous kyphoplasty in treatment of osteoporotic vertebral compression fracture]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1119-1125. [PMID: 36111475 PMCID: PMC9626289 DOI: 10.7507/1002-1892.202204013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/17/2022] [Indexed: 01/24/2023]
Abstract
Objective To evaluate the effectiveness of orthopedic robot with modified tracer fixation (short for modified orthopedic robot) assisted percutaneous kyphoplasty (PKP) in treatment of single-segment osteoporotic vertebral compression fracture (OVCF). Methods The clinical data of 155 patients with single-segment OVCF who were admitted between December 2017 and January 2021 and met the selection criteria was retrospectively analyzed. According to the operation methods, the patients were divided into robot group (87 cases, PKP assisted by modified orthopedic robot) and C-arm group (68 cases, PKP assisted by C-arm X-ray fluoroscopy). There was no significant difference in gender, age, body mass index, T value of bone mineral density, therapeutic segment, grade of vertebral compression fracture, and preoperative visual analogue scale (VAS) score, midline vertebral height, and Cobb angle between the two groups (P>0.05). The effectiveness evaluation indexes of the two groups were collected and compared. The clinical evaluation indexes included the establishment time of working channel, dose of intraoperative fluoroscopy, the amount of injected cement, VAS score before and after operation, and the occurrence of complications. The imaging evaluation indexes included the degree of puncture deviation, the degree of bone cement diffusion, the leakage of bone cement, the midline vertebral height and the Cobb angle before and after operation. Results The establishment time of working channel in robot group was significantly shorter than that in C-arm group, and the dose of intraoperative fluoroscopy was significantly larger than that in C-arm group (P<0.001). There was no significant difference in the amount of injected cement between the two groups (t=1.149, P=0.252). The patients in two groups were followed up 10-14 months (mean, 12 months). Except that the intraoperative VAS score of the robot group was significantly better than that of the C-arm group (P<0.05), there was no significant difference between the two groups at other time points (P>0.05). No severe complication such as infection, spinal cord or nerve injury, and pulmonary embolism occurred in the two groups. Five cases (5.7%) in robot group and 7 cases (10.2%) in C-arm group had adjacent segment fracture, and the difference in incidence of adjacent segment fracture between the two groups was not significant (χ2=1.105, P=0.293). Compared with C-arm group, the deviation of puncture and the diffusion of bone cement at 1 day after operation, the midline vertebral height and Cobb angle at 1 month after operation and last follow-up were significantly better in robot group (P<0.05). Eight cases (9.1%) in the robot group and 16 cases (23.5%) in the C-arm group had cement leakage, and the incidence of cement leakage in the robot group was significantly lower than that in the C-arm group (χ2=5.993, P=0.014). There was no intraspinal leakage in the two groups. Conclusion Compared with traditional PKP assisted by C-arm X-ray fluoroscopy, modified orthopedic robot-assisted PKP in the treatment of single-segment OVCF can significantly reduce intraoperative pain, shorten the establishment time of working channel, and improve the satisfaction of patients with operation. It has great advantages in reducing the deviation of puncture and improving the diffusion of bone cement.
Collapse
Affiliation(s)
- 书 林
- 四川省医学科学院•四川省人民医院骨科(成都 610072)Department of Orthopedics, Sichuan Academy of Medical Science, People’s Hospital of Sichuan Province, Chengdu Sichuan, 610072, P. R. China
| | - 科 谭
- 四川省医学科学院•四川省人民医院骨科(成都 610072)Department of Orthopedics, Sichuan Academy of Medical Science, People’s Hospital of Sichuan Province, Chengdu Sichuan, 610072, P. R. China
| | - 豇 胡
- 四川省医学科学院•四川省人民医院骨科(成都 610072)Department of Orthopedics, Sichuan Academy of Medical Science, People’s Hospital of Sichuan Province, Chengdu Sichuan, 610072, P. R. China
| | - 仑 万
- 四川省医学科学院•四川省人民医院骨科(成都 610072)Department of Orthopedics, Sichuan Academy of Medical Science, People’s Hospital of Sichuan Province, Chengdu Sichuan, 610072, P. R. China
| | - 跃 王
- 四川省医学科学院•四川省人民医院骨科(成都 610072)Department of Orthopedics, Sichuan Academy of Medical Science, People’s Hospital of Sichuan Province, Chengdu Sichuan, 610072, P. R. China
| |
Collapse
|
11
|
李 波, 张 世, 胡 孙, 杜 守, 熊 文. [Three-dimensional finite element analysis of exo-cortical placement of humeral calcar screw for reconstruction of medial column stability]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:995-1002. [PMID: 35979792 PMCID: PMC9379462 DOI: 10.7507/1002-1892.202202032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Indexed: 01/24/2023]
Abstract
Objective To explore the biomechanical stability of the medial column reconstructed with the exo-cortical placement of humeral calcar screw by three-dimensional finite element analysis. Methods A 70-year-old female volunteer was selected for CT scan of the proximal humerus, and a wedge osteotomy was performed 5 mm medially inferior to the humeral head to form a three-dimensional finite element model of a 5 mm defect in the medial cortex. Then, the proximal humeral locking plate (PHILOS) was placed. According to distribution of 2 calcar screws, the study were divided into 3 groups: group A, in which 2 calcar screws were inserted into the lower quadrant of the humeral head in the normal direction for supporting the humeral head; group B, in which 1 calcar screw was inserted outside the cortex below the humeral head, and the other was inserted into the humeral head in the normal direction; group C, in which 2 calcar screws were inserted outside the cortex below the humeral head. The models were loaded with axial, shear, and rotational loadings, and the biomechanical stability of the 3 groups was compared by evaluating the peak von mises stress (PVMS) of the proximal humerus and the internal fixator, proximal humeral displacement, neck-shaft angle changes, and the rotational stability of the proximal humerus. Seven cases of proximal humeral fractures with comminuted medial cortex were retrospectively analyzed between January 2017 and December 2020. Locking proximal humeral plate surgery was performed, and one (5 cases) or two (2 cases) calcar screws were inserted into the inferior cortex of the humeral head during the operation, and the effectiveness was observed. Results Under axial and shear force, the PVMS of the proximal humerus in group B and group C was greater than that in group A, the PVMS of the internal fixator in group B and group C was less than that in group A, while the PVMS of the proximal humerus and internal fixator between group B and group C were similar. The displacement of the proximal humerus and the neck-shaft angle change among the 3 groups were similar under axial and shear force, respectively. Under the rotational torque, compared with group A, the rotation angle of humerus in group B and group C increased slightly, and the rotation stability decreased slightly. All the 7 patients were followed up 6-12 months. All the fractures healed, and the healing time was 8-14 weeks, with an average of 10.9 weeks; the neck-shaft angle changes (the difference between the last follow-up and the immediate postoperative neck-shaft angle) was (1.30±0.42)°, and the Constant score of shoulder joint function was 87.4±4.2; there was no complication such as humeral head varus collapse and screw penetrating the articular surface. Conclusion For proximal humeral fractures with comminuted medial cortex, exo-cortical placement of 1 or 2 humeral calcar screw of the locking plate outside the inferior cortex of the humeral head can also effectively reconstruct medial column stability, providing an alternative approach for clinical practice.
Collapse
Affiliation(s)
- 波 李
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 世民 张
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 孙君 胡
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 守超 杜
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| | - 文峰 熊
- 同济大学附属杨浦医院骨科(上海 200090)Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, 200090, P. R. China
| |
Collapse
|
12
|
Han Z, Bai L, Zhou J, Qian Y, Tang Y, Han Q, Zhang X, Zhang M, Yang X, Cui W, Hao Y. Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials 2022; 285:121545. [PMID: 35512418 DOI: 10.1016/j.biomaterials.2022.121545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Nanofat (NF) is a fine emulsion that has been used to treat a variety of diseases given its abundance of bioactive components. However, the biological functions of NF have been limited due to its inability to localize during implantation. In this study, NF was immobilized in microfluidic-generated aldehyde-modified polylactic glycolic acid (PLGA) porous microspheres (PMs) via Schiff base condensation and non-covalent binding in a three-dimensional (3D) porous network (PMs@NF). The PMs effectively enhanced the cartilage-targeted retention efficiency of NF, which also resulted in remarkable lubrication performance, with the friction coefficient being reduced by ∼80%, which was maintained over time. Meanwhile, the 3D penetrating structure of the microspheres stimulated cytokine secretion by the NF-derived stem cells, upregulating the expression of anabolism-related genes and downregulating catabolism, and the expression of inflammation-related and pain-related genes. Injecting PMs@NF into the knee joint cavity of a rat model with destabilization of the medial meniscus (DMM) reduced osteophyte formation and protected the cartilage from degeneration, thereby inhibiting the progression of osteoarthritis and improving animal behavior. In summary, this study developed a multifunctional platform with NF immobilization and super-lubrication, which showed great potential for the minimally invasive treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zeyu Han
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Lang Bai
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Yinhua Qian
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Qibin Han
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Xiaoyu Zhang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiao Minxiang, Beijing, 100730, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, PR China; Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, PR China.
| |
Collapse
|
13
|
胡 华, 李 连, 刘 艳, 王 书, 谢 双, 孙 建. [Effect of resveratrol on high mobility group box-1 protein signaling pathway in cartilage endplate degeneration caused by inflammation]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:461-469. [PMID: 35426287 PMCID: PMC9011066 DOI: 10.7507/1002-1892.202110084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Indexed: 01/24/2023]
Abstract
Objective To investigate the effect of resveratrol (RES) on inflammation-induced cartilage endplate (CEP) degeneration, and its regulatory mechanism on high mobility group box-1 protein (HMGB1) signaling pathway. Methods The intervertebral CEP cells of Sprague Dawley (SD) rats aged 3 weeks were extracted and identified by toluidine blue staining and immunofluorescence staining of rabbit anti-rat collagen type Ⅱ. The cell counting kit 8 (CCK-8) method was used to screen the optimal concentration of RES on intervertebral CEP cells. Gene chip analysis was used to determine the target of RES on intervertebral CEP cells. Interleukin 1β (IL-1β) was used to construct the intervertebral CEP cell degeneration model caused by inflammation and the 7-8-week-old SD rat intervertebral disc degeneration model, and pcDNA3.1-HMGB1 (pcDNA3.1) was used as the control of RES effect. Flow cytometry and TUNEL staining were used to detect the apoptotic rate of intervertebral CEP cells and rat intervertebral disc tissue cells, respectively. ELISA kit was used to detect the content of interleukin 10 (IL-10) and tumor necrosis factor α (TNF-α) in the cell supernatant and rat serum. Western blot was used to detect the expressions of HMGB1, extracellular signal-regulated protein kinase (ERK), phosphorylated ERK (p-ERK), B cell lymphoma/leukemia 2 gene (Bcl-2), and Bcl-2-associated X protein (Bax). Results The extracted cells were identified as rat intervertebral CEP cells. CCK-8 method screened out the highest activity of intervertebral CEP cells treated with 30 μmol/L RES. The gene chip analysis confirmed that the HMGB1-ERK signal was the target of RES. Both cell experiments and animal experiments showed that RES treatment can significantly down-regulate the apoptosis rate of intervertebral CEP cells, inhibit the release of TNF-α, and increase the content of IL-10; and down-regulate the expressions of HMGB1, p-ERK, and Bax, and increase Bcl-2; and pcDNA3.1 could partially reverse these effects of RES, and the differences were all significant (P<0.05). Conclusion RES can significantly inhibit the apoptosis of intervertebral CEP cells induced by inflammation, which is related to inhibiting the expression of HMGB1.
Collapse
Affiliation(s)
- 华 胡
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 连泰 李
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 艳伟 刘
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 书君 王
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 双喜 谢
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| | - 建君 孙
- 承德医学院附属医院骨伤科(河北承德 067000)Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde Hebei, 067000, P. R. China
| |
Collapse
|
14
|
Al-Ghadban S, Artiles M, Bunnell BA. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol 2022; 9:837464. [PMID: 35096804 PMCID: PMC8792599 DOI: 10.3389/fbioe.2021.837464] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
15
|
Desando G, Grigolo B, Deangelles Pereira Florentino Á, Teixeira MW, Barbagallo F, Naro F, da Silva-Júnior VA, Soares AF. Preclinical Evidence of Intra-Articular Autologous Cartilage Micrograft for Osteochondral Repair: Evaluation in a Rat Model. Cartilage 2021; 13:1770S-1779S. [PMID: 34474579 PMCID: PMC8804823 DOI: 10.1177/19476035211042408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The search for an effective and long-lasting strategy to treat osteochondral defects (OCD) is a great challenge. Regenerative medicine launched a new era of research in orthopaedics for restoring normal tissue functions. The aim of this study was to test the healing potential of Rigenera micrografting technology in a rat model of OCD by investigating 2 cartilage donor sites. METHODS Full-thickness OCD was bilaterally created in the knee joints of rats. Animals were randomly divided into 2 groups based on the anatomical site used for micrograft collection: articular (TO) and xiphoid (XA). Micrograft was injected into the knee via an intra-articular approach. The contralateral joint served as the control. Euthanasia was performed 2 months after the set-up of OCD. Histological evaluations foresaw hematoxylin/eosin and safranin-O/fast green staining, the modified O'Driscoll score, and collagen 1A1 and 2A1 immunostaining. Kruskal-Wallis and the post hoc Dunn test were performed to evaluate differences among groups. RESULTS Histological results showed defect filling in both autologous micrografts. The TO group displayed tissue repair with more hyaline-like characteristics than its control (P < 0.01). A fibrocartilaginous aspect was instead noticed in the XA group. Immunohistochemical assessments on type 2A1 and type 1 collagens confirmed the best histological results in the TO group. CONCLUSIONS TO and XA groups contributed to a different extent to fill the OCD lesions. TO group provided the best histological and immunohistochemical results; therefore, it could be a promising method to treat OCD after the validation in a larger animal model.
Collapse
Affiliation(s)
- Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto
Ortopedico Rizzoli, Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto
Ortopedico Rizzoli, Bologna, Italy,Brunella Grigolo, Laboratorio RAMSES, IRCCS
Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, Bologna, Emilia-Romagna
40136, Italy.
| | | | | | - Federica Barbagallo
- Department of Experimental Medicine,
Sapienza University of Rome, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological,
Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Anísio Francisco Soares
- Department of Animal Morphology and
Physiology, Federal Rural University of Pernambuco–UFRPE, Brazil
| |
Collapse
|
16
|
He Y, Ji D, Lu W, Chen G. The Mechanistic Effects and Clinical Applications of Various Derived Mesenchymal Stem Cells in Immune Thrombocytopenia. Acta Haematol 2021; 145:9-17. [PMID: 34515042 DOI: 10.1159/000517989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by persistent thrombocytopenia resulting from increased platelet destruction and a loss of autoimmune tolerance. The pathogenesis of ITP is highly complex. Although ITP may be effectively controlled with currently available medications in some patients, a subset of cases remain refractory. The application of mesenchymal stem cells (MSCs) for human hematopoietic stem cell transplantation has increasingly demonstrated that MSCs modulate innate or adaptive immunity, thus resulting in a tolerant microenvironment. Functional defects and immunomodulatory disorders have been observed after the use of bone marrow mesenchymal stem cells (BM-MSCs) from patients with ITP. Here, we summarize the underlying mechanisms and clinical applications of various derived MSCs for ITP treatment, focusing on the main mechanisms underlying the functional defects and immune dysfunction of BM-MSCs from patients with ITP. Functional effects associated with the activation of the p53 pathway include decreased activity of the phosphatidylinositol 3 kinase/Akt pathway and activation of the TNFAIP3/NF-κB/SMAD7 pathway. Immune dysfunction appears to be associated with an impaired ability of BM-MSCs to induce various types of immune cells in ITP. At present, research focusing on MSCs in ITP remains in preliminary stages. The application of autologous or exogenous MSCs in the clinical treatment of ITP has been attempted in only a small case study and must be validated in larger-scale clinical trials.
Collapse
Affiliation(s)
- Yue He
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dexiang Ji
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lu
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Xie J, Lu L, Yu X. [Research progress of cellular senescence in the pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:519-526. [PMID: 33855840 DOI: 10.7507/1002-1892.202011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the pathological effects of cellular senescence in the occurrence and development of osteoarthritis (OA) and potential therapeutic targets. Methods The role of chondrocyte senescence, synovial cell senescence, mesenchymal stem cells senescence in OA, and the biological mechanism and progress of chondrocyte senescence were summarized by consulting relevant domestic and abroad literature. Results The existing evidence has basically made clear that chondrocyte senescence, mesenchymal stem cells senescence, and cartilage repair abnormalities, and the occurrence and development of OA have a certain causal relationship, and the role of the senescence of synovial cells, especially synovial macrophages in OA is still unclear. Transcription factors and epigenetics are the main mechanisms that regulate the upstream pathways of cellular senescence. Signal communication between cells can promote the appearance of senescent phenotypes in healthy cells. Targeted elimination of senescent cells and promotion of mesenchymal stem cells rejuvenation can effectively delay the progress of OA. Conclusion Cellular senescence is an important biological phenomenon and potential therapeutic target in the occurrence and development of OA. In-depth study of its biological mechanism is helpful to the early prevention and treatment of OA.
Collapse
Affiliation(s)
- Jinwei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
18
|
Li Q, Yu H, Sun M, Yang P, Hu X, Ao Y, Cheng J. The tissue origin effect of extracellular vesicles on cartilage and bone regeneration. Acta Biomater 2021; 125:253-266. [PMID: 33657452 DOI: 10.1016/j.actbio.2021.02.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
Direct implantation of mesenchymal stem cells (MSCs) for cartilage and bone tissue engineering faces challenges, such as immune rejection and loss of cellular viability or functionality. As nanoscale natural particles, exosomes or small extracellular vesicles (EVs) of MSCs have potential to circumvent these problems. It is significant to investigate the impact of the tissue origin of MSCs on the therapeutic bioactivity of their corresponding EVs for cartilage and bone regeneration. Here, rat MSCs isolated from the adipose, bone marrow, and synovium are cultured to obtain their corresponding EVs (ADSC-EVs, BMSC-EVs, and SMSC-EVs, respectively). The ADSC-EVs stimulate the migration, proliferation, and chondrogenic and osteogenic differentiation of BMSCs in vitro as well as cartilage and bone regeneration in a mouse model more than the BMSC-EVs or SMSC-EVs. Proteomics analysis reveals that the tissue origin contributes to the distinct protein profiles among the three types of EVs, which induced cartilage and bone regenerative capacities by potential mechanisms of regulating signaling pathways including focal adhesion, ECM-receptor interaction, actin cytoskeleton, cAMP, and PI3K-Akt signaling pathways. Consequently, these findings provide insight that the adipose may be a superior candidate in EV-based nanomedicine for cartilage and bone regeneration. STATEMENT OF SIGNIFICANCE: Extracelluar vesicles (EVs) of mesenchymal stem cells (MSCs) have been considered as a promising approach in cartilage and bone tissue engineering. In this study, for the first time, we investigated the tissue origin effect of EVs on chondrogenesis and osteogenesis of MSCs in vitro and in vivo. The results demonstrated that EVs of adipose-derived MSCs showed the most efficiency. Meanwhile, protein proteomics revealed the potential mechanisms. We provide a novel evidence that the adipose is a superior reservoir in EV-based nanotechnologies and biomaterials for cartilage and bone regeneration.
Collapse
Affiliation(s)
- Qi Li
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Huilei Yu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Muyang Sun
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Peng Yang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
19
|
Zhao YX, Chen SR, Huang QY, Chen WC, Xia T, Shi YC, Gao HZ, Shi QY, Lin S. Repair abilities of mouse autologous adipose-derived stem cells and ShakeGel™3D complex local injection with intrauterine adhesion by BMP7-Smad5 signaling pathway activation. Stem Cell Res Ther 2021; 12:191. [PMID: 33736694 PMCID: PMC7977602 DOI: 10.1186/s13287-021-02258-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The objective was to explore the therapeutic effect of autologous adipose-derived stem cells (ADSCs) combined with ShakeGel™3D transplantation to activate the BMP7-Smad5 signaling pathway to treat intrauterine adhesions (IUA). METHODS Autologous ADSCs were isolated and then merged with ShakeGel™3D. The IUA model was established by mechanical injury. The third generation of autologous ADSCs was injected directly into the uterus in combination with ShakeGel™3D. After 7 days of treatment, endometrial morphology, number of endometrial glands, endometrial fibrosis area, and fibrosis biomarker analysis by RT-PCR and IHC were examined. BMP7 and phosphorylation of Smad5 were also detected, and the recovery of infertility function in treated mice was evaluated. RESULTS Fluorescence-activated cell sorting (FACS) showed that autologous ADSCs expressed CD105 (99.1%), CD29 (99.6%), and CD73 (98.9%). Autologous ADSCs could still maintain a good growth state in ShakeGel™3D. Histological examination revealed that the number of endometrial glands increased significantly, and the area of fibrosis decreased. At the same time, the expression of BMP7 and Smad5 in the ADSCs + Gel group was significantly upregulated, and the final reproductive function of this group was partly recovered. CONCLUSIONS Autologous ADSCs can be used in combination with ShakeGel™3D to maintain functionality and create a viable three-dimensional growth environment. The combined transplantation of autologous ADSCs and ShakeGel™3D promotes the recovery of damaged endometrial tissue by increasing BMP7-Smad5 signal transduction, resulting in endometrium thickening, increased number of glands, and decreased fibrosis, leading to restoration of partial fertility.
Collapse
Affiliation(s)
- Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Wei-Can Chen
- Department of Anaesthesiology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Tian Xia
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian province, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, Univeristy of New South Wales, Sydeny, New South Wales, 2052, Australia
| | - Hong-Zhi Gao
- Clinical Center for Molecular Diagnosis and Therapy, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|