1
|
Guo KC, Wang ZZ, Su XQ. Chinese Medicine in Colorectal Cancer Treatment: From Potential Targets and Mechanisms to Clinical Application. Chin J Integr Med 2024:10.1007/s11655-024-4115-8. [PMID: 39331211 DOI: 10.1007/s11655-024-4115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 09/28/2024]
Abstract
Colorectal cancer (CRC) is a global health challenge necessitating innovative therapeutic strategies. There is an increasing trend toward the clinical application of integrative Chinese medicine (CM) and Western medicine approaches. Chinese herbal monomers and formulations exert enhanced antitumor effects by modulating multiple signaling pathways in tumor cells, including inhibiting cell proliferation, inducing apoptosis, suppressing angiogenesis, reversing multidrug resistance, inhibiting metastasis, and regulating immunity. The synergistic effects of CM with chemotherapy, targeted therapy, immunotherapy, and nanovectors provide a comprehensive framework for CRC treatment. CM can mitigate drug toxicity, improve immune function, control tumor progression, alleviate clinical symptoms, and improve patients' survival and quality of life. This review summarizes the key mechanisms and therapeutic strategies of CM in CRC, highlighting its clinical significance. The potential for CM and combination with conventional treatment modalities is emphasized, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Ke-Chen Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zao-Zao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang-Qian Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Li T, Fan L, Jia Y, Xu C, Guo W, Wang Y, Li Y. Colorectal cancer cells with stably expressed SIRT3 demonstrate proliferating retardation by Wnt/β-catenin cascade inactivation. Clin Exp Pharmacol Physiol 2024; 51:e13856. [PMID: 38621772 DOI: 10.1111/1440-1681.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Colorectal cancer (CRC) is a typical and lethal digestive system malignancy. In this study, we investigated the effect of sirtuin 3 (SIRT3) expression, a fidelity mitochondrial protein, on the proliferation of CRC cells and the mechanisms involved. Using the University of Alabama at Birmingham Cancer Data Analysis Portal database and the Clinical Proteomic Tumour Analysis Consortium database, we discovered that low expression of SIRT3 in CRC was a negative factor for survival prognosis (P < .05). Meanwhile, SIRT3 expression was correlated with distant metastasis and tumour, node, metastasis stage of CRC patients (P < .05). Subsequently, we observed that CRC cells with stable SIRT3 expression exhibited a significant decrease in proliferative capacities both in vitro and in vivo, compared to their counterparts (P < .05). Further investigation using western blot, immunoprecipitation and TOPflash/FOPflash assay showed the mechanism of growth retardation of these cells was highly associated with the degradation of β-catenin in cytosol, and the localization of β-catenin/α-catenin complex in the nucleus. In conclusion, our findings suggest that the inhibition of CRC cell proliferation by SIRT3 is closely associated with the inactivation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Leqi Fan
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Yijiang Jia
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Chen Xu
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Pharmacology, School of Pharmaceutical Science, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Liu B, Li Y, Xu Y, Xue W, Jin Z. Jian Yun Qing Hua Decoction inhibits malignant behaviors of gastric carcinoma cells via COL12A1 mediated ferroptosis signal pathway. Chin Med 2023; 18:118. [PMID: 37700383 PMCID: PMC10496189 DOI: 10.1186/s13020-023-00799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Jian Yun Qing Hua Decoction (JYQHD), a traditional Chinese medicine decoction, which has been applied in the treatment of gastric cancer (GC). We attempt to confirm the anti-gastric cancer effect of JYQHD and explore the mechanism of JYQHD. METHODS Acute toxicity test was used to understand the toxicity of JYQHD. We studied the expression and prognostic outcome of COL12A1 within GC tissues through the network databases. Using several web-based databases, we analyzed the major components and targets of JYQHD, as well as known therapeutic targets in gastric cancer. The Venn diagram was utilized to obtain the overlapped genes. Lentiviral vector, shRNAs and plasmids, were used to transfect GC cells. Cell counting kit-8 (CCK8), sphere formation, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), Fe2+, transmission electron microscopy (TEM), quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), Western-Blot (WB), and immunohistochemical (IHC) assays were employed to investigate the role and mechanism of COL12A1 and JYQHD in GC. RESULTS The results showed that JYQHD was non-toxic and safe. JYQHD inhibited growth and sphere formation ability through inducing the ferroptosis of GC cells, and suppressed the GC cells induced subcutaneous xenograft tumor growth. COL12A1 was highly expressed in gastric cancer tissues, indicating poor prognosis. COL12A1 specifically enhanced GC cell progression and stemness via suppressing ferroptosis. JYQHD down-regulated COL12A1 in order to suppress the stemness of GC cells via inducing ferroptosis. CONCLUSION COL12A1 inhibited ferroptosis and enhanced stemness in GC cells. JYQHD inhibited the development of GC cells by inhibiting cancer cell stemness via the ferroptosis pathway mediated by COL12A1.
Collapse
Affiliation(s)
- Baoxinzi Liu
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yu Li
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yuanyuan Xu
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Weiwei Xue
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Zhichao Jin
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Zhuang J, Mo J, Huang Z, Yan Y, Wang Z, Cao X, Yang C, Shen B, Zhang F. Mechanisms of Xiaozheng decoction for anti-bladder cancer effects via affecting the GSK3β/β-catenin signaling pathways: a network pharmacology-directed experimental investigation. Chin Med 2023; 18:104. [PMID: 37608369 PMCID: PMC10464372 DOI: 10.1186/s13020-023-00818-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE The combination of Xiaozheng decoction with postoperative intravesical instillation has been shown to improve the prognosis of bladder cancer patients and prevent recurrence. However, the mechanisms underlying the efficacy of this herbal formula remain largely unclear. This research aims to identify the important components of Xiaozheng decoction and explore their anti-bladder cancer effect and mechanism using network pharmacology-based experiments. METHODS The chemical ingredients of each herb in the Xiaozheng decoction were collected from the Traditional Chinese Medicine (TCM) database. Network pharmacology was employed to predict the target proteins and pathways of action. Disease databases were utilized to identify target genes associated with bladder cancer. A Protein-Protein Interaction (PPI) network was constructed to illustrate the interaction with intersected target proteins. Key targets were identified using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. A compound-target-pathway network was established after molecular docking predictions. In vitro experiments with bladder cancer cell lines were conducted using core chemical components confirmed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) to verify the conclusions of network pharmacology. RESULTS 45 active compounds were extracted, and their relationships with Traditional Chinese Medicines (TCMs) and protein targets were presented, comprising 7 herbs, 45 active compounds, and 557 protein targets. The intersection between potential TCM target genes and bladder cancer-related genes yielded 322 genes. GO and KEGG analyses indicated that these targets may be involved in numerous cancer-related pathways. Molecular docking results showed that candidate compounds except mandenol could form stable conformations with the receptor. In vitro experiments on three bladder cancer cell lines demonstrated that quercetin and two other impressive new compounds, bisdemethoxycurcumin (BDMC) and kumatakenin, significantly promoted cancer cell apoptosis through the B-cell lymphoma 2/Bcl-2-associated X (Bcl-2/BAX) pathway and inhibited proliferation and migration through the glycogen synthase kinase 3 beta (GSK3β)/β-catenin pathway. CONCLUSION By employing network pharmacology and conducting in vitro experiments, the mechanism of Xiaozheng decoction's effect against bladder cancer was tentatively elucidated, and its main active ingredients and targets were identified, providing a scientific basis for future research.
Collapse
Affiliation(s)
- Jingming Zhuang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahang Mo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Hu Q, Chen C, Lin Z, Zhang L, Guan S, Zhuang X, Dong G, Shen J. The Antimicrobial Peptide Esculentin-1a(1-21)NH 2 Stimulates Wound Healing by Promoting Angiogenesis through the PI3K/AKT Pathway. Biol Pharm Bull 2023; 46:382-393. [PMID: 36385013 DOI: 10.1248/bpb.b22-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delayed wound healing is a persistent medical problem mainly caused by decreased angiogenesis. Esculentin-1a(1-21)NH2 [Esc-1a(1-21)NH2], has broad-spectrum antibacterial properties which comes from frog skins. It has shown promise as a treatment for wound healing. However, its effects on angiogenesis as well as the mechanism by which esc-1a(1-21)NH2 enhanced wound healing remained unclear. In this study, we analyzed the structural properties and biocompatibility of esc-1a(1-21)NH2 and evaluated its effect on wound closure using a full-thickness excision model in mice. Our results showed that esc-1a(1-21)NH2 significantly accelerated wound healing by increasing collagen deposition and angiogenesis, characterized by elevated expression levels of platelet, endothelial cell adhesion molecule-1 (CD31) and proliferating cell nuclear antigen (PCNA). Furthermore, the angiogenic activity of esc-1a(1-21)NH2 was confirmed in vitro by various assays. Esc-1a(1-21)NH2 significantly promoted cell migration and cell proliferation in human umbilical vein vascular endothelial cells (HUVECs) via activation of the phosphatidylinositol 3'-kinase (PI3K)/protein kinase B (AKT) pathway, and upregulated the expression of CD31 at both mRNA and protein levels. The effect of esc-1a(1-21)NH2 on angiogenesis was diminished by LY294002, a PI3K pathway inhibitor. Taken together, this study demonstrates that esc-1a(1-21)NH2 accelerates wound closure in mice by promoting angiogenesis via the PI3K/AKT signaling pathway, suggesting its effective application in the treatment of wound healing.
Collapse
Affiliation(s)
- Qiong Hu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Chujun Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Zhenming Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Liyao Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Sujiuan Guan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Xiaoyan Zhuang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Guangfu Dong
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| |
Collapse
|
6
|
Ma C, Gu Y, Liu C, Tang X, Yu J, Li D, Liu J. Anti-cervical cancer effects of Compound Yangshe granule through the PI3K/AKT pathway based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115820. [PMID: 36220511 DOI: 10.1016/j.jep.2022.115820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Yangshe granule is a characteristic Chinese preparation against cervical cancer used at Fudan University Shanghai Cancer Center, and it consists of Hedyotis Diffusae Herba, Solani Lyrati Herba, Rubiae Radix et Rhizoma, Echinopsis Radix, Angelicae Sinensis Radix, Codonopsis Radix and Atractylodis Macrocephalae Rhizoma. AIM OF THE STUDY The objective of the current study was to investigate the preclinical efficacy of compound Yangshe granule against cervical cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS Antitumor effect of the preparation was investigated in U14 cells in vitro and subcutaneous xenograft mice in vivo. The underlying mechanisms were investigated by through network pharmacological analysis and identified by in vitro study. The components of compound Yangshe granule were collected from the Traditional Chinese Medicine Systems Pharmacology database, and the corresponding targets were predicted by the SwissTargetPrediction database. The targets involved in cervical cancer were collected from the GeneCards, Online Mendelian Inheritance in Man and DrugBank databases. A protein‒protein interaction network was constructed by using the String platform. The drug-disease-target network was plotted by Cytoscape software. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were performed to investigate hub targets. RESULTS After treatment with 0.5-10 mg/mL compound Yangshe granule, the survival rates of U14 cells gradually declined to 53.32% for 24 h, 23.62% for 48 h, and 12.81% for 72 h. The apoptosis rates of U14 cells gradually increased to 15.52% for 24 h, 23.87% for 48 h, and 65.01% for 72 h after treatment with 2-10 mg/mL compound Yangshe granule. After oral administration of compound Yangshe granule by xenograft mice, the tumor inhibition rates reached 52.27%, 74.62%, and 82.70% in the low, middle, and high dose groups, respectively. According to the network pharmacological analysis, quercetin, luteolin and naringenin were the most bioactive ingredients of the preparation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that compound Yangshe granule may combat cervical cancer through the PI3K/AKT pathway. CONCLUSION In summary, network pharmacology combined with biological experiments demonstrated that the main bioactive components including quercetin, luteolin and naringenin could inhibit the tumor growth by regulating the PI3K/AKT pathway and Bcl-2 family. Thus, compound Yangshe granule may be a promising adjuvant therapy for cervical cancer.
Collapse
Affiliation(s)
- Chao Ma
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianchao Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
7
|
LI M, ZHENG J, WANG S, CHEN L, PENG X, CHEN J, AN H, HU B. Tenglong Buzhong granules inhibits the growth of SW620 human colon cancer. J TRADIT CHIN MED 2022; 42:701-706. [PMID: 36083476 PMCID: PMC9924744 DOI: 10.19852/j.cnki.jtcm.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To observe the anticancer effects of the granular preparation of Tenglong Buzhong decoction (,TBD), i.e Tenglong Buzhong granules (, TBG), in human SW620 colon cancer. METHODS BALB/c nude mice were subcutaneously transplanted with SW620 cells, and treated with TBG (2.56 g/kg, once per day) and/or 5-Fu (104 mg/kg, once per week) for 21 d. Apoptosis, Caspase activities and cellular senescence were measured by commercial kits. The protein expression and phosphorylation were detected by Western blot or immunohistochemistry. RESULTS TBG and 5-Fu inhibited tumor growth. The tumor inhibition rate of the TBG, 5-Fu, and TBG+5-Fu groups was 42.25%, 51.58%, and 76.08%, respectively. Combination of TBG and 5-Fu showed synergetic anti-cancer effects. TBG and 5-Fu induced apoptosis, activated caspase-3, -8, and -9, increased SMAC expression, inhibited XIAP expression. TBG induced cellular senescence, upregulated cyclin-dependent kinase inhibitor 1a (CDKN1a) and cyclin-dependent kinase inhibitor 2a (CDKN2a) expression, and inhibited phosphorylation of retinoblastoma-associated protein (RB) and expression of cyclin E1 (CCNE1) and cyclin-dependent kinases (CDK) 2. TBG also inhibited angiogenesis accompanied by downregulation of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α). CONCLUSIONS TBG inhibits SW620 colon cancer growth, induces apoptosis SMAC-XIAP-Caspases signaling, induces cellular senescence through CDKN1a/CDKN2a-RB-E2F signaling, inhibits angiogenesis by down-regulation of HIF-1α and VEGF, and enhances the effects of 5-Fu.
Collapse
Affiliation(s)
- Miao LI
- 1 Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- 2 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jialu ZHENG
- 2 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shuangshuang WANG
- 3 Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lei CHEN
- 1 Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- 2 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiao PENG
- 1 Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- 2 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jinfang CHEN
- 1 Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- 2 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hongmei AN
- 4 Department of Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing HU
- 1 Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- 2 Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Dr. HU Bing, Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. Telephone: +86-21-64385700
| |
Collapse
|
8
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
9
|
Liu Y, Tzang B, Yow J, Chiang Y, Huang C, Hsu T. Traditional Chinese medicine formula T33 inhibits the proliferation of human colorectal cancer cells by inducing autophagy. ENVIRONMENTAL TOXICOLOGY 2022; 37:1007-1017. [PMID: 34995006 PMCID: PMC9304163 DOI: 10.1002/tox.23460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 05/15/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death globally. Although surgery is still the major method for CRC therapy, the adoption of alternative treatments, such as traditional Chinese medicine (TCM), for CRC treatment is increasing. Our previous study has indicated the anti-breast cancer activity of T33 (a TCM formula). Interestingly, a major ingredient in T33, Baishao (Paeoniae Radix Alba), was reported to have antiproliferative effects on CRC cells. Therefore, this study further validated the influences of T33 on HT-29 and Caco2 cells both in vitro and in vivo. Viability and migration assays were performed to analyze the influences of T33 on proliferation and migratory activity of HT-29 and Caco2 cells. Immunofluorescence (IF) staining and immunoblotting were performed to confirm T33-induced autophagy in HT-29 and Caco2 cells. Xenograft HT-29 tumors were generated to test the effects of T33 in vivo. Significantly reduced survival and migratory activity were observed in both HT-29 and Caco2 cells treated with T33 along with apparently increased LC3-II protein. Significantly decreased p62/SQSTM1 protein, increased LC3-II/LC3-I ratio, and elevated amounts of Atg7, Atg5, and Beclin-1 proteins were detected in both HT-29 and Caco2 cells treated with T33. Moreover, the volume of xenograft HT-29 tumors was significantly lower in mice receiving 200 or 600 mg/kg T33 than in control-treated mice. These findings indicate that T33 exerts anti-CRC activity by inducing autophagy and suggest the potential of T33 for CRC treatment.
Collapse
Affiliation(s)
- Yu‐Te Liu
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Bor‐Show Tzang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Biochemistry, School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Immunology Research CenterChung Shan Medical UniversityTaichungTaiwan
- Department of Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| | - JiaLe Yow
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Biochemistry, School of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Yi‐Hsuan Chiang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Chih‐Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research CenterHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Center of General Education, Buddhist Tzu Chi Medical FoundationTzu Chi University of Science and TechnologyHualienTaiwan
- Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
| | - Tsai‐Ching Hsu
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Immunology Research CenterChung Shan Medical UniversityTaichungTaiwan
- Department of Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
10
|
Sanaei MJ, Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Shahrokh S, Zali MR, Bashash D. The PI3K/Akt/mTOR axis in colorectal cancer: Oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J Cell Physiol 2021; 237:1720-1752. [PMID: 34897682 DOI: 10.1002/jcp.30655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the deadliest human malignancies worldwide. Several molecular pathways have been demonstrated to be involved in the initiation and development of CRC which among them, the overactivation of the phosphatidyl-inositol 3-kinase (PI3K)/Akt/mTOR axis is of importance. The current review aims to unravel the mechanisms by which the PI3K/Akt/mTOR pathway affects CRC progression; and also, to summarize the original data obtained from international research laboratories on the oncogenic alterations and polymorphisms affecting this pathway in CRC. Besides, we provide a special focus on the regulatory role of noncoding RNAs targeting the PI3K/Akt/mTOR pathway in this malignancy. Questions on how this axis is involved in the inhibition of apoptosis, in the induction of drug resistance, and the angiogenesis, epithelial to mesenchymal transition, and metastasis are also responded. We also discussed the PI3K/Akt pathway-associated prognostic and predictive biomarkers in CRC. In addition, we provide a general overview of PI3K/Akt/mTOR pathway inhibition whether by chemical-based drugs or by natural-based medications in the context of CRC, either as monotherapy or in combination with other therapeutic agents; however, those treatments might have life-threatening side effects and toxicities. To the best of our knowledge, the current review is one of the first ones highlighting the emerging roles of nanotechnology to overcome challenges related to CRC therapy in the hope that providing a promising platform for the treatment of CRC.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhao H, Yang H, Liu M, Ren S, Xu H. Traditional Chinese Medicine and Colorectal Cancer: Implications for Drug Discovery. Front Pharmacol 2021; 12:685002. [PMID: 34276374 PMCID: PMC8281679 DOI: 10.3389/fphar.2021.685002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
As an important part of complementary and alternative medicine, traditional Chinese medicine (TCM) has been applied to treat a host of diseases for centuries. Over the years, with the incidence rate of human colorectal cancer (CRC) increasing continuously and the advantage of TCM gradually becoming more prominent, the importance of TCM in both domestic and international fields is also growing with each passing day. However, the unknowability of active ingredients, effective substances, and the underlying mechanisms of TCM against this malignant tumor greatly restricts the translation degree of clinical products and the pace of precision medicine. In this review, based on the characteristics of TCM and the oral administration of most ingredients, we herein provide beneficial information for the clinical utilization of TCM in the prevention and treatment of CRC and retrospect the current preclinical studies on the related active ingredients, as well as put forward the research mode for the discovery of active ingredients and effective substances in TCM, to provide novel insights into the research and development of innovative agents from this conventional medicine for CRC treatment and assist the realization of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Ganoderma lucidum Spore Polysaccharide Inhibits the Growth of Hepatocellular Carcinoma Cells by Altering Macrophage Polarity and Induction of Apoptosis. J Immunol Res 2021; 2021:6696606. [PMID: 33748291 PMCID: PMC7954632 DOI: 10.1155/2021/6696606] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular carcinoma cells. Methods We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP (800 μg/mL, 400 μg/mL, and 200 μg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. Results In this study, GLSP promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1β, IL-6, and TGF-β1. The MTT assay revealed that GLSP+Mø at 400 μg/mL and 800 μg/mL significantly inhibited H22 cell proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages, promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and cytokines. Conclusion Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and induction of apoptosis.
Collapse
|