1
|
Li N, Xue Y, Zhu C, Chen N, Qi M, Fang M, Huang S. The zinc-finger transcription factor KLF6 regulates cardiac fibrosis. Life Sci 2024; 351:122805. [PMID: 38851422 DOI: 10.1016/j.lfs.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
AIMS Heart failure (HF) is one of the most devastating consequences of cardiovascular diseases. Regardless of etiology, cardiac fibrosis is present and promotes the loss of heart function in HF patients. Cardiac resident fibroblasts, in response to a host of pro-fibrogenic stimuli, trans-differentiate into myofibroblasts to mediate cardiac fibrosis, the underlying mechanism of which remains incompletely understood. METHODS Fibroblast-myofibroblast transition was induced in vitro by exposure to transforming growth factor (TGF-β). Cardiac fibrosis was induced in mice by either transverse aortic constriction (TAC) or by chronic infusion with angiotensin II (Ang II). RESULTS Through bioinformatic screening, we identified Kruppel-like factor 6 (KLF6) as a transcription factor preferentially up-regulated in cardiac fibroblasts from individuals with non-ischemic cardiomyopathy (NICM) compared to the healthy donors. Further analysis showed that nuclear factor kappa B (NF-κB) bound to the KLF6 promoter and mediated KLF6 trans-activation by pro-fibrogenic stimuli. KLF6 knockdown attenuated whereas KLF6 over-expression enhanced TGF-β induced fibroblast-myofibroblast transition in vitro. More importantly, myofibroblast-specific KLF6 depletion ameliorated cardiac fibrosis and rescued heart function in mice subjected to the TAC procedure or chronic Ang II infusion. SIGNIFICANCE In conclusion, our data support a role for KLF6 in cardiac fibrosis.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Chenghao Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Naxia Chen
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Mengwen Qi
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Shan Huang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research, Department of Cardiology, the First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Ding J, Fayyaz AI, Ding Y, Liang D, Luo M. Role of Specificity Protein 1 (SP1) in Cardiovascular Diseases: Pathological Mechanisms and Therapeutic Potentials. Biomolecules 2024; 14:807. [PMID: 39062521 PMCID: PMC11274404 DOI: 10.3390/biom14070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In mammals, specificity protein 1 (SP1) was the first Cys2-His2 zinc finger transcription factor to be isolated within the specificity protein and Krüppel-like factor (Sp/KLF) gene family. SP1 regulates gene expression by binding to Guanine-Cytosine (GC)-rich sequences on promoter regions of target genes, affecting various cellular processes. Additionally, the activity of SP1 is markedly influenced by posttranslational modifications, such as phosphorylation, acetylation, glycosylation, and proteolysis. SP1 is implicated in the regulation of apoptosis, cell hypertrophy, inflammation, oxidative stress, lipid metabolism, plaque stabilization, endothelial dysfunction, fibrosis, calcification, and other pathological processes. These processes impact the onset and progression of numerous cardiovascular disorders, including coronary heart disease, ischemia-reperfusion injury, cardiomyopathy, arrhythmia, and vascular disease. SP1 emerges as a potential target for the prevention and therapeutic intervention of cardiac ailments. In this review, we delve into the biological functions, pathophysiological mechanisms, and potential clinical implications of SP1 in cardiac pathology to offer valuable insights into the regulatory functions of SP1 in heart diseases and unveil novel avenues for the prevention and treatment of cardiovascular conditions.
Collapse
Affiliation(s)
- Jie Ding
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Aminah I. Fayyaz
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.I.F.); (Y.D.)
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.I.F.); (Y.D.)
| | - Dandan Liang
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Ming Luo
- School of Medicine, Tongji University, Shanghai 200092, China; (J.D.); (D.L.)
| |
Collapse
|
4
|
Liu L, Sun K, Luo Y, Wang B, Yang Y, Chen L, Zheng S, Wu T, Xiao P. Myocardin-related transcription factor A, regulated by serum response factor, contributes to diabetic cardiomyopathy in mice. Life Sci 2023; 317:121470. [PMID: 36758668 DOI: 10.1016/j.lfs.2023.121470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
AIMS Diabetic cardiomyopathy is a significant contributor to the global pandemic of heart failure. In the present study we investigated the involvement of myocardin-related transcription factor A (MRTF-A), a transcriptional regulator, in this process. MATERIALS AND METHODS Diabetic cardiomyopathy was induced in mice by feeding with a high-fat diet (HFD) or streptozotocin (STZ) injection. KEY FINDINGS We report that MRTF-A was up-regulated in the hearts of mice with diabetic cardiomyopathy. MRTF-A expression was also up-regulated by treatment with palmitate in cultured cardiomyocytes in vitro. Mechanistically, serum response factor (SRF) bound to the MRTF-A gene promoter and activated MRTF-A transcription in response to pro-diabetic stimuli. Knockdown of SRF abrogated MRTF-A induction in cardiomyocytes treated with palmitate. When cardiomyocytes conditional MRTF-A knockout mice (MRTF-A CKO) and wild type (WT) mice were placed on an HFD to induce diabetic cardiomyopathy, it was found that the CKO mice and the WT mice displayed comparable metabolic parameters including body weight, blood insulin concentration, blood cholesterol concentration, and glucose tolerance. However, both systolic and diastolic cardiac function were exacerbated by MRTF-A deletion in the heart. SIGNIFICANCE These data suggest that MRTF-A up-regulation might serve as an important compensatory mechanism to safeguard the deterioration of cardiac function during diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yajun Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingshu Wang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China; Department of Pathology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
The role of SMAD signaling in hypertrophic obstructive cardiomyopathy: an immunohistopathological study in pediatric and adult patients. Sci Rep 2023; 13:3706. [PMID: 36878974 PMCID: PMC9988847 DOI: 10.1038/s41598-023-30776-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hypertrophic obstructive cardiomyopathy (HOCM) can bring a high risk of sudden cardiac death in young people. It is particularly urgent to understand the development and mechanism of HOCM to prevent unsafe incidents. Here, the comparison between pediatric and adult patients with HOCM has been performed to uncover the signaling mechanism regulating pathological process through histopathological analysis and immunohistochemical analysis. We found SMAD proteins played an important role during myocardial fibrosis for HOCM patients. In patients with HOCM, Masson and HE staining showed that myocardial cells were diffusely hypertrophied with obvious disorganized myocardial fiber alignment, and myocardial tissue was more damaged and collagen fibers increased significantly, which come early in childhood. Increased expressions of SMAD2 and SMAD3 contributed to myocardial fibrosis in patients with HOCM, which happened early in childhood and continued through adulthood. In addition, decreased expression of SMAD7 was closely related to collagen deposition, which negatively expedited fibrotic responses in patients with HOCM. Our study indicated that the abnormal regulation of SMAD signaling pathway can lead to severe myocardial fibrosis in childhood and its fibrogenic effects persist into adulthood, which is a crucial factor in causing sudden cardiac death and heart failure in HOCM patients.
Collapse
|
6
|
Wu T, Li N, Zhang Q, Liu R, Zhao H, Fan Z, Zhuo L, Yang Y, Xu Y. MKL1 fuels ROS-induced proliferation of vascular smooth muscle cells by modulating FOXM1 transcription. Redox Biol 2022; 59:102586. [PMID: 36587486 PMCID: PMC9823229 DOI: 10.1016/j.redox.2022.102586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) promotes vascular injury and neointima formation in part by stimulating proliferation of vascular smooth muscle cells (VSMC). The underlying transcriptional mechanism, however, is not completely understood. Here we report that VSMC-specific deletion of MKL1 in mice suppressed neointima formation in a classic model of vascular injury. Likewise, pharmaceutical inhibition of MKL1 activity by CCG-1423 similarly mollified neointima formation in mice. Over-expression of a constitutively active MKL1 in vascular smooth muscle cells enhanced proliferation in a ROS-dependent manner. On the contrary, MKL1 depletion or inhibition attenuated VSMC proliferation. PCR array based screening identified forkhead box protein M1 (FOXM1) as a direct target for MKL1. MKL1 interacted with E2F1 to activate FOXM1 expression. Concordantly, FOXM1 depletion ameliorated MKL1-dependent VSMC proliferation. Of interest, ROS-induced MKL1 phosphorylation through MK2 was essential for its interaction with E2F1 and consequently FOXM1 trans-activation. Importantly, a positive correlation between FOXM1 expression and VSMC proliferation was identified in arterial specimens from patients with restenosis. Taken together, our data suggest that a redox-sensitive phosphorylation-switch of MKL1 activates FOXM1 transcription and mediates ROS fueled vascular smooth muscle proliferation. Targeting the MK-2/MKL1/FOXM1 axis may be considered as a reasonable approach for treatment of restenosis.
Collapse
Affiliation(s)
- Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Nan Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Qiumei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruiqi Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|
7
|
Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Dipyridamole and adenosinergic pathway in Covid-19: a juice or holy grail. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:140. [PMID: 37521831 PMCID: PMC9510284 DOI: 10.1186/s43042-022-00354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Coronavirus disease 2019 (Covid-19) is an infectious worldwide pandemic triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2). This pandemic disease can lead to pro-inflammatory activation with associated acute lung injury and acute respiratory distress syndrome. Main body of the abstract SARS-CoV-2 infection is linked with inhibition of adenosine and activation of phosphodiesterase. Dipyridamole (DIP) is a nucleoside transport and phosphodiesterase inhibitor so that it may potentially affect SARS-CoV-2 infection and its accompanying inflammations. Therefore, the primary objective of this mini-review study was to elucidate the potential beneficial impacts of DIP on the adenosinergic pathway in Covid-19. A systemic search was done using online databases with relevant keywords. The findings of the present study illustrated that DIP directly or indirectly, through augmentation of adenosine and inhibition of phosphodiesterase, mitigates Covid-19 outcomes. Conclusion Our study concluded that DIP has a potential therapeutic effect in the management and treatment of Covid-19. This could be attained either directly, through anti-SARS-CoV-2, anti-inflammatory, and anti-platelets properties, or indirectly, through augmentation of extracellular adenosine, which has anti-inflammatory and immune-regulatory effects. However, extensive randomized clinical trials, and clinical and prospective research in this area are required to demonstrate the safety and therapeutic efficacy of DIP and adenosine modulators in the treatment of Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| |
Collapse
|
8
|
Fan Z, Kong M, Dong W, Dong C, Miao X, Guo Y, Liu X, Miao S, Li L, Chen T, Qu Y, Yu F, Duan Y, Lu Y, Zou X. Trans-activation of eotaxin-1 by Brg1 contributes to liver regeneration. Cell Death Dis 2022; 13:495. [PMID: 35614068 PMCID: PMC9132924 DOI: 10.1038/s41419-022-04944-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Infiltration of eosinophils is associated with and contributes to liver regeneration. Chemotaxis of eosinophils is orchestrated by the eotaxin family of chemoattractants. We report here that expression of eotaxin-1 (referred to as eotaxin hereafter), but not that of either eotaxin-2 or eotaxin-3, were elevated, as measured by quantitative PCR and ELISA, in the proliferating murine livers compared to the quiescent livers. Similarly, exposure of primary murine hepatocytes to hepatocyte growth factor (HGF) stimulated eotaxin expression. Liver specific deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated eosinophil infiltration and down-regulated eotaxin expression in mice. Brg1 deficiency also blocked HGF-induced eotaxin expression in cultured hepatocytes. Further analysis revealed that Brg1 could directly bind to the proximal eotaxin promoter to activate its transcription. Mechanistically, Brg1 interacted with nuclear factor kappa B (NF-κB)/RelA to activate eotaxin transcription. NF-κB knockdown or pharmaceutical inhibition disrupted Brg1 recruitment to the eotaxin promoter and blocked eotaxin induction in hepatocytes. Adenoviral mediated over-expression of eotaxin overcame Brg1 deficiency caused delay in liver regeneration in mice. On the contrary, eotaxin depletion with RNAi or neutralizing antibodies retarded liver regeneration in mice. More important, Brg1 expression was detected to be correlated with eotaxin expression and eosinophil infiltration in human liver specimens. In conclusion, our data unveil a novel role of Brg1 as a regulator of eosinophil trafficking by activating eotaxin transcription.
Collapse
Affiliation(s)
- Zhiwen Fan
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China ,grid.428392.60000 0004 1800 1685Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Ming Kong
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chunlong Dong
- grid.410745.30000 0004 1765 1045Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiulian Miao
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- grid.411351.30000 0001 1119 5892College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Shuying Miao
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Lin Li
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Tingting Chen
- grid.428392.60000 0004 1800 1685Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yeqing Qu
- grid.428392.60000 0004 1800 1685Experimental Animal Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Fei Yu
- grid.428392.60000 0004 1800 1685Experimental Animal Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yunfei Duan
- grid.490563.d0000000417578685Department of Hepatobiliary Surgery, the First People’s Hospital of Changzhou, the Third Hospital Affiliated with Soochow University, Changzhou, China
| | - Yunjie Lu
- grid.490563.d0000000417578685Department of Hepatobiliary Surgery, the First People’s Hospital of Changzhou, the Third Hospital Affiliated with Soochow University, Changzhou, China
| | - Xiaoping Zou
- grid.428392.60000 0004 1800 1685Department of Gastroenterology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
9
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Nogo-B promotes invasion and metastasis of nasopharyngeal carcinoma via RhoA-SRF-MRTFA pathway. Cell Death Dis 2022; 13:76. [PMID: 35075114 PMCID: PMC8786944 DOI: 10.1038/s41419-022-04518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Distant metastasis remains the major cause for treatment failure in patients with nasopharyngeal carcinoma (NPC). Thus, it is necessary to investigate the underlying regulation mechanisms and potential biomarkers for NPC metastasis. Nogo-B (neurite outgrowth inhibitor B), encoded by reticulon-4, has been shown to be associated with the progression and advanced stage of several cancer types. However, the relationship between Nogo-B and NPC remains unknown. In this study, we found that higher expression of Nogo-B was detected in NPC cells and tissues. Higher expression of Nogo-B was statistically relevant to N stage, M stage, and poor prognosis in NPC patients. Further functional investigations indicated that Nogo-B overexpression could increase the migration, invasion, and metastasis ability of NPC cells in vitro and in vivo. Mechanistically, Nogo-B promoted epithelial-mesenchymal transition (EMT) and enhanced the invasive potency by interacting directly with its receptor NgR3 in NPC. Additionally, overexpression of Nogo-B could upregulate the protein levels of p-RhoA, SRF, and MRTFA. A positive relationship was found between the expression of Nogo-B and the p-RhoA in NPC patients as well as in mouse lung xenografts. Nogo-Bhigh p-RhoAhigh expression was significantly associated with N stage, M stage, and poor prognosis in NPC patients. Notably, CCG-1423, an inhibitor of the RhoA-SRF-MRTFA pathway, could reverse the invasive potency of Nogo-B and NgR3 in NPC cell lines, and decrease the expression of N-Cadherin, indicating that CCG-1423 may be a potential target drug of NPC. Taken together, our findings reveal that Nogo-B enhances the migration and invasion potency of NPC cells via EMT by binding to its receptor NgR3 to regulate the RhoA-SRF-MRTFA pathway. These findings could provide a novel insight into understanding the metastasis mechanism and targeted therapy of advanced NPC.
Collapse
|
11
|
Shao T, Xue Y, Fang M. Epigenetic Repression of Chloride Channel Accessory 2 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. Front Cell Dev Biol 2021; 9:771466. [PMID: 34869368 PMCID: PMC8633401 DOI: 10.3389/fcell.2021.771466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a key pathophysiological process that contributes to heart failure. Cardiac resident fibroblasts, exposed to various stimuli, are able to trans-differentiate into myofibroblasts and mediate the pro-fibrogenic response in the heart. The present study aims to investigate the mechanism whereby transcription of chloride channel accessory 2 (Clca2) is regulated in cardiac fibroblast and its potential implication in fibroblast-myofibroblast transition (FMyT). We report that Clca2 expression was down-regulated in activated cardiac fibroblasts (myofibroblasts) compared to quiescent cardiac fibroblasts in two different animal models of cardiac fibrosis. Clca2 expression was also down-regulated by TGF-β, a potent inducer of FMyT. TGF-β repressed Clca2 expression at the transcriptional level likely via the E-box element between -516 and -224 of the Clca2 promoter. Further analysis revealed that Twist1 bound directly to the E-box element whereas Twist1 depletion abrogated TGF-β induced Clca2 trans-repression. Twist1-mediated Clca2 repression was accompanied by erasure of histone H3/H4 acetylation from the Clca2 promoter. Mechanistically Twist1 interacted with HDAC1 and recruited HDAC1 to the Clca2 promoter to repress Clca2 transcription. Finally, it was observed that Clca2 over-expression attenuated whereas Clca2 knockdown enhanced FMyT. In conclusion, our data demonstrate that a Twist1-HDAC1 complex represses Clca2 transcription in cardiac fibroblasts, which may contribute to FMyT and cardiac fibrosis.
Collapse
Affiliation(s)
- Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
12
|
HES5-mediated repression of LIGHT transcription may contribute to apoptosis in hepatocytes. Cell Death Discov 2021; 7:308. [PMID: 34689159 PMCID: PMC8542050 DOI: 10.1038/s41420-021-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prototypical form of metabolic syndrome and has become a global pandemic. Hepatocytes undergo apoptosis in the pathogenesis of NAFLD. We report that the lymphokine LIGHT/TNFSF14 was upregulated in the murine NAFLD livers and in hepatocytes treated with free fatty acids (palmitate, PA). LIGHT knockdown or neutralization attenuated PA-induced apoptosis of hepatocytes. Similarly, knockdown or blockade of LTβR, the receptor for LIGHT, ameliorated apoptosis in hepatocytes exposed to PA. Ingenuity pathway analysis (IPA) revealed several Notch-related transcription factors as upstream regulators of LIGHT, of which HES5 expression was downregulated paralleling LIGHT induction in the pathogenesis of NAFLD. HES5 knockdown enhanced whereas HES5 over-expression weakened LIGHT induction in hepatocytes. HES5 was found to directly bind to the LIGHT promoter and repress LIGHT transcription. Mechanistically, HES5 interacted with SIRT1 to deacetylate histone H3/H4 on the LIGHT promoter to repress LIGHT transcription. SIRT1 knockdown or inhibition offset the effect of HES5 over-expression on LIGHT transcription and hepatocyte apoptosis. In conclusion, our data unveil a novel mechanism that might contribute to excessive apoptosis in hepatocyte exposed to free fatty acids.
Collapse
|
13
|
Nagarajan M, Maadurshni GB, Tharani GK, Udhayakumar I, Kumar G, Mani KP, Sivasubramanian J, Manivannan J. Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis - Role of oxidative stress and MAPK signaling. Chem Biol Interact 2021; 351:109719. [PMID: 34699767 DOI: 10.1016/j.cbi.2021.109719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
The precise toxico-pathogenic effects of zinc oxide nanoparticles (ZnO-NPs) on the cardiovascular system under normal and cardiovascular disease (CVD) risk factor milieu are unclear. In this study, we have investigated the dose-dependent effects of ZnO-NPs on developing chicken embryo and cell culture (H9c2 cardiomyoblast, HUVEC and aortic VSMC) models. In addition, the potentiation effect of ZnO-NPs on simulated risk factor conditions was evaluated using; 1. Reactive oxygen species (ROS) induced cardiac remodeling, 2. Angiotensin-II induced cardiac hypertrophy, 3. TNF-α induced HUVEC cell death and 4. Inorganic phosphate (Pi) induced aortic VSMC calcification models. The observed results illustrates that ZnO-NPs exposure down regulates vascular development and elevates oxidative stress in heart tissue. At the cellular level, ZnO-NPs exposure reduced the cell viability and increased the intracellular ROS generation, lipid peroxidation and caspase-3 activity in a dose-dependent manner in all three cell types. In addition, ZnO-NPs exposure significantly suppressed the endothelial nitric oxide (NO) generation, cardiac Ca2+ - ATPase activity and enhanced the cardiac mitochondrial swelling. Moreover, inhibition of p38 MAPK and JNK signaling pathways influence the cytotoxicity. Overall, ZnO-NPs exposure affects the cardiovascular system under normal conditions and it exacerbates the cardiovascular pathogenesis under selected risk factor milieu.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Ganeshmurthy Kanniamal Tharani
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Inbamani Udhayakumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Kumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
14
|
Lv F, Shao T, Xue Y, Miao X, Guo Y, Wang Y, Xu Y. Dual Regulation of Tank Binding Kinase 1 by BRG1 in Hepatocytes Contributes to Reactive Oxygen Species Production. Front Cell Dev Biol 2021; 9:745985. [PMID: 34660604 PMCID: PMC8517266 DOI: 10.3389/fcell.2021.745985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
Excessive accumulation of reactive oxygen species (ROS) is considered a major culprit for the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We have previously shown that deletion of Brahma related gene 1 (BRG1) mitigated NAFLD in mice in part by attenuating ROS production in hepatocyte. Here we report that BRG1 deletion led to simultaneous down-regulation in expression and phosphorylation of tank binding kinase 1 (TBK1) in vivo and in vitro. On the one hand, BRG1 interacted with AP-1 to bind to the TBK1 promoter and directly activated TBK1 transcription in hepatocytes. On the other hand, BRG1 interacted with Sp1 to activate the transcription of c-SRC, a tyrosine kinase essential for TBK1 phosphorylation. Over-expression of c-SRC and TBK1 corrected the deficiency in ROS production in BRG1-null hepatocytes whereas depletion of TBK1 or c-SRC attenuated ROS production. In conclusion, our data suggest that dual regulation of TBK1 activity, at the transcription level and the post-transcriptional level, by BRG1 may constitute an important mechanism underlying excessive ROS production in hepatocytes.
Collapse
Affiliation(s)
- Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
15
|
Chen B, Dong W, Shao T, Miao X, Guo Y, Liu X, Feng Y. A KDM4-DBC1-SIRT1 Axis Contributes to TGF-b Induced Mesenchymal Transition of Intestinal Epithelial Cells. Front Cell Dev Biol 2021; 9:697614. [PMID: 34631698 PMCID: PMC8493255 DOI: 10.3389/fcell.2021.697614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-β augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-β and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-β induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Kong M, Dong W, Zhu Y, Fan Z, Miao X, Guo Y, Li C, Duan Y, Lu Y, Li Z, Xu Y. Redox-sensitive activation of CCL7 by BRG1 in hepatocytes during liver injury. Redox Biol 2021; 46:102079. [PMID: 34454163 PMCID: PMC8406035 DOI: 10.1016/j.redox.2021.102079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver injuries induced by various stimuli share in common an acute inflammatory response, in which circulating macrophages home to the liver parenchyma to participate in the regulation of repair, regeneration, and fibrosis. In the present study we investigated the role of hepatocyte-derived C-C motif ligand 7 (CCL7) in macrophage migration during liver injury focusing on its transcriptional regulation. We report that CCL7 expression was up-regulated in the liver by lipopolysaccharide (LPS) injection (acute liver injury) or methionine-and-choline-deficient (MCD) diet feeding (chronic liver injury) paralleling increased macrophage infiltration. CCL7 expression was also inducible in hepatocytes, but not in hepatic stellate cells or in Kupffer cells, by LPS treatment or exposure to palmitate in vitro. Hepatocyte-specific deletion of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, resulted in a concomitant loss of CCL7 induction and macrophage infiltration in the murine livers. Of interest, BRG1-induced CCL7 transcription and macrophage migration was completely blocked by the antioxidant N-acetylcystine. Further analyses revealed that BRG1 interacted with activator protein 1 (AP-1) to regulate CCL7 transcription in hepatocytes in a redox-sensitive manner mediated in part by casein kinase 2 (CK2)-catalyzed phosphorylation of BRG1. Importantly, a positive correlation between BRG1/CCL7 expression and macrophage infiltration was identified in human liver biopsy specimens. In conclusion, our data unveil a novel role for BRG1 as a redox-sensitive activator of CCL7 transcription.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Chengping Li
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; College of Life Sciences and Institute of Biomedical Research, Liaocheng University, China.
| |
Collapse
|
17
|
Li Z, Zhao Q, Lu Y, Zhang Y, Li L, Li M, Chen X, Sun D, Duan Y, Xu Y. DDIT4 S-Nitrosylation Aids p38-MAPK Signaling Complex Assembly to Promote Hepatic Reactive Oxygen Species Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101957. [PMID: 34310076 PMCID: PMC8456271 DOI: 10.1002/advs.202101957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Indexed: 05/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling plays a significant role in reactive oxygen species (ROS) production. The authors have previously shown that Brahma-related gene 1 (BRG1), a chromatin remodeling protein, contributes to hepatic ROS accumulation in multiple animal and cellular models of liver injury. Here it is reported that DNA damage-induced transcript 4 (DDIT4) is identified as a direct transcriptional target for BRG1. DDIT4 overexpression overcomes BRG1 deficiency to restore ROS production whereas DDIT4 knockdown phenocopies BRG1 deficiency in suppressing ROS production in vitro and in vivo. Mechanistically, DDIT4 coordinates the assembly of the p38-MAPK signaling complex to drive ROS production in an S-nitrosylation dependent manner. Molecular docking identifies several bioactive DDIT4-inteacting compounds including imatinib, nilotinib, and nateglinide, all of which are confirmed to attenuate hepatic ROS production, dampen p38-MAPK signaling, and ameliorate liver injury by influencing DDIT4 S-nitrosylation. Importantly, positive correlation between ROS levels and BRG1/DDIT4/S-nitrosylated DDIT4 levels is detected in human liver biopsy specimens. In conclusion, the data reveal a transcription-based signaling cascade that contributes to ROS production in liver injury.
Collapse
Affiliation(s)
- Zilong Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
- Institute of Biomedical ResearchLiaocheng UniversityLiaocheng252000China
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Qianwen Zhao
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Yangxi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
| | - Luyang Li
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
| | - Min Li
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Yunfei Duan
- Department of Hepatobiliary and Pancreatic SurgeryThe First People's Hospital of ChangzhouThe Third Affiliated Hospital of Soochow UniversityChangzhou213000China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Translational MedicineNanjing Medical UniversityNanjing211166China
- Institute of Biomedical ResearchLiaocheng UniversityLiaocheng252000China
- State Key Laboratory of Natural MedicinesDepartment of PharmacologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
18
|
Kong M, Dong W, Xu H, Fan Z, Miao X, Guo Y, Li C, Ye Q, Wang Y, Xu Y. Choline Kinase Alpha Is a Novel Transcriptional Target of the Brg1 in Hepatocyte: Implication in Liver Regeneration. Front Cell Dev Biol 2021; 9:705302. [PMID: 34422825 PMCID: PMC8377418 DOI: 10.3389/fcell.2021.705302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration is a key compensatory process in response to liver injury serving to contain damages and to rescue liver functions. Hepatocytes, having temporarily exited the cell cycle after embryogenesis, resume proliferation to regenerate the injured liver parenchyma. In the present study we investigated the transcriptional regulation of choline kinase alpha (Chka) in hepatocytes in the context of liver regeneration. We report that Chka expression was significantly up-regulated in the regenerating livers in the partial hepatectomy (PHx) model and the acetaminophen (APAP) injection model. In addition, treatment with hepatocyte growth factor (HGF), a strong pro-proliferative cue, stimulated Chka expression in primary hepatocytes. Chka depletion attenuated HGF-induced proliferation of hepatocytes as evidenced by quantitative PCR and Western blotting measurements of pro-proliferative genes as well as EdU incorporation into replicating DNA. Of interest, deletion of Brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuated Chka induction in the regenerating livers in mice and in cultured hepatocytes. Further analysis revealed that Brg1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) to directly bind to the Chka promoter and activate Chka transcription. Finally, examination of human acute liver failure (ALF) specimens identified a positive correlation between Chka expression and Brg1 expression. In conclusion, our data suggest that Brg1-dependent trans-activation of Chka expression may contribute to liver regeneration.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chengping Li
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Qing Ye
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Yutong Wang
- Department of Cell Biology, The Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Pathophysiology, Collaborative Innovation Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
19
|
Glavaški M, Velicki L. Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach. Life (Basel) 2021; 11:life11080785. [PMID: 34440529 PMCID: PMC8398249 DOI: 10.3390/life11080785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore the molecular mechanisms shared by HCM and its clinical presentations through the automated extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the INDRA database, which aggregates knowledge from pathway databases and combines it with molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and 19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of HCM and its clinical presentations were represented as networks; the most important elements in the intersections’ networks were found, centrality scores for each element of each network calculated, networks with reduced level of noise generated, and cooperatively working elements detected in each intersection network. The identified shared molecular mechanisms represent possible mechanisms underlying different HCM clinical presentations. Applied methodology produced results consistent with the information in the scientific literature.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Correspondence: or
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
20
|
Yang Y, Wang H, Zhao H, Miao X, Guo Y, Zhuo L, Xu Y. A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:698254. [PMID: 34381779 PMCID: PMC8350349 DOI: 10.3389/fcell.2021.698254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelin, encoded by ET1, is a vasoactive substance primarily synthesized in vascular endothelial cells (VECs). Elevation of endothelin levels, due to transcriptional hyperactivation, has been observed in a host of cardiovascular diseases. We have previously shown that serum response factor (SRF) is a regulator of ET1 transcription in VECs. Here we report that angiotensin II (Ang II) induced ET1 transcription paralleled activation of glycogen synthase kinase 3 (GSK3) in cultured VECs. GSK3 knockdown or pharmaceutical inhibition attenuated Ang II induced endothelin expression. Of interest, the effect of GSK3 on endothelin transcription relied on the conserved SRF motif within the ET1 promoter. Further analysis revealed that GSK3 interacted with and phosphorylated SRF at serine 224. Phosphorylation of SRF by GSK3 did not influence its recruitment to the ET1 promoter. Instead, GSK3-mediated SRF phosphorylation potentiated its interaction with MRTF-A, a key co-factor for SRF, which helped recruit the chromatin remodeling protein BRG1 to the ET1 promoter resulting in augmented histone H3 acetylation/H3K4 trimethylation. Consistently, over-expression of a constitutively active GSK enhanced Ang II-induced ET1 transcription and knockdown of either MRTF-A or BRG1 abrogated the enhancement of ET1 transcription. In conclusion, our data highlight a previously unrecognized mechanism that contributes to the transcriptional regulation of endothelin. Targeting this GSK3-SRF axis may yield novel approaches in the intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Chen B, Zhu Y, Chen J, Feng Y, Xu Y. Activation of TC10-Like Transcription by Lysine Demethylase KDM4B in Colorectal Cancer Cells. Front Cell Dev Biol 2021; 9:617549. [PMID: 34249900 PMCID: PMC8260841 DOI: 10.3389/fcell.2021.617549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant colorectal cancers (CRCs) are characterized by enhanced migration and invasion thus acquiring the ability to metastasize. We have previously shown that the small GTPase TC10-like (TCL) contributes to aggressive migration and invasion in malignant CRC cells. TCL expression is differentially expressed in CRC cells and can be upregulated by hypoxia although the underlying epigenetic mechanism is not fully appreciated. Here, we report that differential TCL expression in CRC cells appeared to be associated with histone H3K9 methylation. RNAi screening revealed that the lysine demethylase KDM4B was essential for TCL transcription in CRC cells. KDM4B interacted with and was recruited by the sequence-specific transcription factor ETS-related gene 1 (ERG1) to the TCL promoter to activate transcription. Mechanistically, KDM4B mediated H3K9 demethylase facilitated the assembly of pre-initiation complex (PIC) on the TCL promoter. KDM4B knockdown attenuated migration and invasion of CRC cells. Importantly, KDM4B expression was upregulated in human CRC specimens of advanced stages compared to those of lower grades and associated with poor prognosis. Together, these data uncover a novel epigenetic mechanism underlying malignant transformation of CRC cells and suggest that KDM4B may be considered as a therapeutic target in CRC intervention.
Collapse
Affiliation(s)
- Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Yifei Feng
- Department of Colorectal Surgery, The First Hospital Affiliated With Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
22
|
Zhang Z, Chen B, Zhu Y, Zhang T, Yuan Y, Zhang X, Xu Y. The Jumonji Domain-Containing Histone Demethylase Homolog 1D/lysine Demethylase 7A (JHDM1D/KDM7A) Is an Epigenetic Activator of RHOJ Transcription in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:664375. [PMID: 34249916 PMCID: PMC8262595 DOI: 10.3389/fcell.2021.664375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The small GTPase RHOJ is a key regulator of breast cancer metastasis by promoting cell migration and invasion. The prometastatic stimulus TGF-β activates RHOJ transcription via megakaryocytic leukemia 1 (MKL1). The underlying epigenetic mechanism is not clear. Here, we report that MKL1 deficiency led to disrupted assembly of the RNA polymerase II preinitiation complex on the RHOJ promoter in breast cancer cells. This could be partially explained by histone H3K9/H3K27 methylation status. Further analysis confirmed that the H3K9/H3K27 dual demethylase JHDM1D/KDM7A was essential for TGF-β-induced RHOJ transcription in breast cancer cells. MKL1 interacted with and recruited KDM7A to the RHOJ promoter to cooperatively activate RHOJ transcription. KDM7A knockdown attenuated migration and invasion of breast cancer cells in vitro and mitigated the growth and metastasis of breast cancer cells in nude mice. KDM7A expression level, either singularly or in combination with that of RHOJ, could be used to predict prognosis in breast cancer patients. Of interest, KDM7A appeared to be a direct transcriptional target of TGF-β signaling. A SMAD2/SMAD4 complex bound to the KDM7A promoter and mediated TGF-β-induced KDM7A transcription. In conclusion, our data unveil a novel epigenetic mechanism whereby TGF-β regulates the transcription of the prometastatic small GTPase RHOJ. Screening for small-molecule inhibitors of KDM7A may yield effective therapeutic solutions to treat malignant breast cancers.
Collapse
Affiliation(s)
- Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Baoyu Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoling Zhang
- School of Medicine, Nanchang University, Nanchang, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
23
|
Liu L, Zhao Q, Lin L, Yang G, Yu L, Zhuo L, Yang Y, Xu Y. Myeloid MKL1 Disseminates Cues to Promote Cardiac Hypertrophy in Mice. Front Cell Dev Biol 2021; 9:583492. [PMID: 33898415 PMCID: PMC8063155 DOI: 10.3389/fcell.2021.583492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac hypertrophy is a key pathophysiological process in the heart in response to stress cues. Although taking place in cardiomyocytes, the hypertrophic response is influenced by other cell types, both within the heart and derived from circulation. In the present study we investigated the myeloid-specific role of megakaryocytic leukemia 1 (MKL1) in cardiac hypertrophy. Following transverse aortic constriction (TAC), myeloid MKL1 conditional knockout (MFCKO) mice exhibit an attenuated phenotype of cardiac hypertrophy compared to the WT mice. In accordance, the MFCKO mice were protected from excessive cardiac inflammation and fibrosis as opposed to the WT mice. Conditioned media collected from macrophages enhanced the pro-hypertrophic response in cardiomyocytes exposed to endothelin in an MKL1-dependent manner. Of interest, expression levels of macrophage derived miR-155, known to promote cardiac hypertrophy, were down-regulated in the MFCKO mice compared to the WT mice. MKL1 depletion or inhibition repressed miR-155 expression in macrophages. Mechanistically, MKL1 interacted with NF-κB to activate miR-155 transcription in macrophages. In conclusion, our data suggest that MKL1 may contribute to pathological hypertrophy via regulating macrophage-derived miR-155 transcription.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Department of Pathology, Suzhou Municipal Hospital Affiliated with Nanjing Medical University, Suzhou, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
24
|
Dong W, Zhu Y, Zhang Y, Fan Z, Zhang Z, Fan X, Xu Y. BRG1 Links TLR4 Trans-Activation to LPS-Induced SREBP1a Expression and Liver Injury. Front Cell Dev Biol 2021; 9:617073. [PMID: 33816466 PMCID: PMC8012493 DOI: 10.3389/fcell.2021.617073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple organ failure is one of the most severe consequences in patients with septic shock. Liver injury is frequently observed during this pathophysiological process. In the present study we investigated the contribution of Brahma related gene 1 (BRG1), a chromatin remodeling protein, to septic shock induced liver injury. When wild type (WT) and liver conditional BRG1 knockout (LKO) mice were injected with lipopolysaccharide (LPS), liver injury was appreciably attenuated in the LKO mice compared to the WT mice as evidenced by plasma ALT/AST levels, hepatic inflammation and apoptosis. Of interest, there was a down-regulation of sterol response element binding protein 1a (SREBP1a), known to promote liver injury, in the LKO livers compared to the WT livers. BRG1 did not directly bind to the SREBP1a promoter. Instead, BRG1 was recruited to the toll-like receptor 4 (TLR4) promoter and activated TLR4 transcription. Ectopic TLR4 restored SREBP1a expression in BRG1-null hepatocytes. Congruently, adenovirus carrying TLR4 or SREBP1a expression vector normalized liver injury in BRG1 LKO mice injected with LPS. Finally, a positive correlation between BRG1 and TLR4 expression was detected in human liver biopsy specimens. In conclusion, our data demonstrate that a BRG1-TLR4-SREBP1a axis that mediates LPS-induced liver injury in mice.
Collapse
Affiliation(s)
- Wenhui Dong
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yangxi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
25
|
Kong M, Zhu Y, Shao J, Fan Z, Xu Y. The Chromatin Remodeling Protein BRG1 Regulates SREBP Maturation by Activating SCAP Transcription in Hepatocytes. Front Cell Dev Biol 2021; 9:622866. [PMID: 33718362 PMCID: PMC7947303 DOI: 10.3389/fcell.2021.622866] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Sterol response element binding protein (SREBP) is a master regulator of cellular lipogenesis. One key step in the regulation of SREBP activity is its sequential cleavage and trans-location by several different proteinases including SREBP cleavage activating protein (SCAP). We have previously reported that Brahma related gene 1 (BRG1) directly interacts with SREBP1c and SREBP2 to activate pro-lipogenic transcription in hepatocytes. We report here that BRG1 deficiency resulted in reduced processing and nuclear accumulation of SREBP in the murine livers in two different models of non-alcoholic steatohepatitis (NASH). Exposure of hepatocytes to lipopolysaccharide (LPS) and palmitate (PA) promoted SREBP accumulation in the nucleus whereas BRG1 knockdown or inhibition blocked SREBP maturation. Further analysis revealed that BRG1 played an essential role in the regulation of SCAP expression. Mechanistically, BRG1 interacted with Sp1 and directly bound to the SCAP promoter to activate SCAP transcription. Forced expression of exogenous SCAP partially rescued the deficiency in the expression of SREBP target genes in BRG1-null hepatocytes. In conclusion, our data uncover a novel mechanism by which BRG1 contributes to SREBP-dependent lipid metabolism.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jing Shao
- Wu Medical School, Jiangnan University, Wuxi, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
26
|
Hong W, Kong M, Qi M, Bai H, Fan Z, Zhang Z, Sun A, Fan X, Xu Y. BRG1 Mediates Nephronectin Activation in Hepatocytes to Promote T Lymphocyte Infiltration in ConA-Induced Hepatitis. Front Cell Dev Biol 2021; 8:587502. [PMID: 33553140 PMCID: PMC7858674 DOI: 10.3389/fcell.2020.587502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatitis (FH) is a major cause of acute liver failure. Concanavalin A (ConA) belongs to the lectin family and is frequently used as an inducer of FH in animal models. ConA induced FH is characterized by massive accumulation of T lymphocytes in the liver. A host of chemoattractive substances are known to promote T cell homing to the liver during acute hepatitis. Here we investigated the involvement of Brahma-related gene 1 (BRG1), a chromatin remodeling protein, in FH. BRG1-flox mice were crossed to Alb-Cre mice to generate hepatocyte conditional BRG1 knockout (LKO) mice. The mice were peritoneally injected with a single dose of ConA to induce FH. BRG1 deficiency mitigated ConA-induced FH in mice. Consistently, there were fewer T lymphocyte infiltrates in the LKO livers compared to the wild type (WT) livers paralleling downregulation of T cell specific cytokines. Further analysis revealed that BRG1 deficiency repressed the expression of several chemokines critical for T cell homing including nephronectin (Npnt). BRG1 knockdown blocked the induction of Npnt in hepatocytes and attenuated T lymphocyte migration in vitro, which was reversed by the addition of recombinant nephronectin. Mechanistically, BRG1 interacted with β-catenin to directly bind to the Npnt promoter and activate Npnt transcription. Importantly, a positive correlation between infiltration of CD3+ T lymphocyes and nephronectin expression was detected in human acute hepatitis biopsy specimens. In conclusion, our data identify a novel role for BRG1 as a promoter of T lymphocyte trafficking by activating Npnt transcription in hepatocytes. Targeting the BRG1-Npnt axis may yield novel therapeutic solutions for FH.
Collapse
Affiliation(s)
- Wenxuan Hong
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China
| | - Mengwen Qi
- Laboratory Center for Experimental Medicine, Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Aijun Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medicine, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
27
|
Wu X, Dong W, Zhang T, Ren H, Wang J, Shang L, Zhu Z, Zhu W, Shi X, Xu Y. Epiregulin (EREG) and Myocardin Related Transcription Factor A (MRTF-A) Form a Feedforward Loop to Drive Hepatic Stellate Cell Activation. Front Cell Dev Biol 2021; 8:591246. [PMID: 33520984 PMCID: PMC7843934 DOI: 10.3389/fcell.2020.591246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSC) into myofibroblast cells is considered the linchpin of liver fibrosis. A myriad of signaling pathways contribute to HSC activation and consequently liver fibrosis. Epidermal growth factor (EGF) family of cytokines signal through the cognate receptor EGFR to promote HSC activation. In the present study we investigated the transcription regulation of epiregulin (EREG), an EGFR ligand, during HSC activation. We report that EREG expression was significantly up-regulated in activated HSCs compared to quiescent HSCs isolated from mice. In addition, there was an elevation of EREG expression in HSCs undergoing activation in vitro. Of interest, deficiency of myocardin-related transcription factor A (MRTF-A), a well-documented regulator of HSC trans-differentiation, attenuated up-regulation of EREG expression both in vivo and in vitro. Further analysis revealed that MRTF-A interacted with serum response factor (SRF) to bind directly to the EREG promoter and activate EREG transcription. EREG treatment promoted HSC activation in vitro, which was blocked by MRTF-A depletion or inhibition. Mechanistically, EREG stimulated nuclear trans-location of MRTF-A in HSCs. Together, our data portray an EREG-MRTF-A feedforward loop that contributes to HSC activation and suggest that targeting the EREG-MRTF-A axis may yield therapeutic solutions against liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|