1
|
Choudhury AR, Nagesh AM, Gupta S, Chaturvedi PK, Kumar N, Sandeep K, Pandey D. MicroRNA signature of stromal-epithelial interactions in prostate and breast cancers. Exp Cell Res 2024; 441:114171. [PMID: 39029573 DOI: 10.1016/j.yexcr.2024.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Stromal-epithelial communication is an absolute necessity when it comes to the morphogenesis and pathogenesis of solid tissues, including the prostate and breast. So far, signalling pathways of several growth factors have been investigated. Besides such chemical factors, non-coding RNAs such as miRNAs have recently gained much interest because of their variety and complexity of action. Prostate and breast tissues being highly responsive to steroid hormones such as androgen and estrogen, respectively, it is not surprising that a huge set of available literature critically investigated the interplay between such hormones and miRNAs, especially in carcinogenesis. This review showcases our effort to highlight hormonally-related miRNAs that also somehow perturb the regular stromal-epithelial interactions during carcinogenesis in the prostate and breast. In future, we look forward to exploring how hormonal changes in the tissue microenvironment bring about miRNA-mediated changes in stromal-epithelial interactome in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Ankit Roy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India; Department of Biology, Philipps University, Marburg, Germany
| | - A Muni Nagesh
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Sandeep
- Department of Preventive Oncology, Dr. Bhim Rao Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Moradi Z, Kazemi M, Jamshidi-Khalifelou R, Bahramnia V, Esfandmaz F, Rahnavard R, Moradgholi B, Piri-Gharaghie T. CRISPR du-HITI an attractive approach to targeting Long Noncoding RNA HCP5 as inhibitory factor for proliferation of ovarian cancer cell. Funct Integr Genomics 2024; 24:61. [PMID: 38507114 DOI: 10.1007/s10142-024-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
This research provides a glimmer of hope that the knockout of HCP5 leads to a therapy response to considerably prolong the life of patients with OC. RT-PCR evaluated the expression of lncRNA HCP5 in the ovarian cancer OVCAR-3 cell line. CRISPR knockout cell lines validated by western blot. Small genomic deletions at the targeted locus were induced. CCK-8 colony formation assays were used to analyze the effect of HCP5 knockout on the proliferation capacity of OVCAR-3 cells. Transwell migration and invasion assayed. Furthermore, the Sphere-formation assay isolated the most aggressive population of cancer stem cells. Bioinformatic analysis showed a significant correlation between lncRNA HCP5 up-regulation and OVCAR-3 cell proliferation. The ChIP technique assesses specific sites of interaction between transcription factors and DNA. Real-time PCR assays explored the relationship between HCP5, Hsa-miR-9-5p, CXCR4, CDH1, caspase-3, p53, bcl2 and survivin. PCR carried out amplification of the 448-bp band for sgRNA1 and sgRNA2 after the use of particular primers for HCP5. the number of breast cancer cells that moved to the bottom chamber reduced considerably after transfection with PX461-sgRNA1/2 vectors compared to the Blank control groups (P < 0.05). MTT assay designated growth curves that showed the rate of OVCAR-3 growth was significantly repressed (***P < 0.001) when compared with control OVCAR-3 cells after HCP5 knockdown. Also, the survival results of W.T cells in 24, 48 and 72 h showed 92%, 87% and 85%, respectively. This is while the cells of the CRISPR/Cas9 group in which LncRNA HCP5 was knocked out had 42% (*P < 0.05), 23%(**P < 0.01) and 14% (**P < 0.01) survival, respectively. The expression levels of caspase-3, Hsa-miR-9-5p, P53 genes in the HCP5 deletion of CRISPR/Cas9 group significantly increased than the W.T. control group; the deletion group showed a considerable reduction in HCP5 expression compared to the blank control group (3.6-fold, p < 0.01). Whereas BCL2, SURVIVIN, CXCR4, CDH1 genes expression markedly increased than in HCP5 knockout cells (5.8-fold, p < 0.05). These results indicate that CRISPR/Cas9-mediated HCP5 disruption on OVCAR-3 cell lines promotes anti-tumor biomarkers, suppressing ovarian cancer progression. Consistent with these results, HCP5 is one of the most critical lnc for the efficient proliferation and migration of OVCAR-3 cell lines.
Collapse
Affiliation(s)
- Zeinab Moradi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mandana Kazemi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Roya Jamshidi-Khalifelou
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Vahid Bahramnia
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Fatemeh Esfandmaz
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Reza Rahnavard
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnoush Moradgholi
- Department of Medical Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
3
|
Niemira M, Bielska A, Chwialkowska K, Raczkowska J, Skwarska A, Erol A, Zeller A, Sokolowska G, Toczydlowski D, Sidorkiewicz I, Mariak Z, Reszec J, Lyson T, Moniuszko M, Kretowski A. Circulating serum miR-362-3p and miR-6721-5p as potential biomarkers for classification patients with adult-type diffuse glioma. Front Mol Biosci 2024; 11:1368372. [PMID: 38455766 PMCID: PMC10918470 DOI: 10.3389/fmolb.2024.1368372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
According to the fifth edition of the WHO Classification of Tumours of the Central Nervous System (CNS) published in 2021, grade 4 gliomas classification includes IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately, despite precision oncology development, the prognosis for patients with grade 4 glioma remains poor, indicating an urgent need for better diagnostic and therapeutic strategies. Circulating miRNAs besides being important regulators of cancer development could serve as promising diagnostic biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA miR-362-3p and miR-6721-5p screening signature for serum for non-invasive classification of identified glioma cases into the highest-grade 4 and lower-grade gliomas. A total of 102 samples were included in this study, comprising 78 grade 4 glioma cases and 24 grade 2-3 glioma subjects. Using the NanoString platform, seven miRNAs were identified as differentially expressed (DE), which was subsequently confirmed via RT-qPCR analysis. Next, numerous combinations of DE miRNAs were employed to develop classification models. The dual panel of miR-362-3p and miR-6721-5p displayed the highest diagnostic value to differentiate grade 4 patients and lower grade cases with an AUC of 0.867. Additionally, this signature also had a high AUC = 0.854 in the verification cohorts by RT-qPCR and an AUC = 0.842 using external data from the GEO public database. The functional annotation analyses of predicted DE miRNA target genes showed their primary involvement in the STAT3 and HIF-1 signalling pathways and the signalling pathway of pluripotency of stem cells and glioblastoma-related pathways. For additional exploration of miRNA expression patterns correlated with glioma, we performed the Weighted Gene-Co Expression Network Analysis (WGCNA). We showed that the modules most associated with glioma grade contained as many as six DE miRNAs. In conclusion, this study presents the first evidence of serum miRNA expression profiling in adult-type diffuse glioma using a classification based on the WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-6721-5p signatures have the potential to be utilised for grading gliomas in clinical applications.
Collapse
Affiliation(s)
- Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Chwialkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Skwarska
- Albert Einstein College of Medicine, Cancer Center, Bronx, NY, United States
| | - Anna Erol
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zeller
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Gabriela Sokolowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Damian Toczydlowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Pathology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Chen Y, Xu H, Tang H, Li H, Zhang C, Jin S, Bai D. miR-9-5p expression is associated with vascular invasion and prognosis in hepatocellular carcinoma, and in vitro verification. J Cancer Res Clin Oncol 2023; 149:14657-14671. [PMID: 37584711 DOI: 10.1007/s00432-023-05257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a common liver malignancy. Early vascular invasion (VI) has been associated with poor prognosis in HCC patients. MicroRNAs (miRNAs) play a significant role in the emergence and development of many tumor types. METHODS Differential expression analysis of miRNAs related to VI was performed based on data from the TCGA database, and survival-associated miRNAs identified. We identified miR-9-5p as a survival-related miRNA and verified its expression in 61 clinical samples using quantitative real-time PCR. We further performed functional enrichment analysis, protein-protein interaction analysis, univariate and multivariate analysis of the survival-related miRNAs, and cell function assays. RESULTS In this study, we identified miR-9-5p that could predict VI and prognosis in HCC patients. Cellular experiments demonstrated that downregulation of miR‑9‑5p inhibits migration, invasion, and angiogenesis of HCC cells. Further, we explored and verified the possible mechanism through which miR-9-5p is involved in HCC progression. Univariate and multivariate analysis revealed that miR-9-5p was an independent risk factor for HCC. Finally, the nomogram based on miR-9-5p showed a good predictive value of HCC survival. CONCLUSIONS MiR-9-5p is associated with VI in HCC, and higher expression of miR-9-5p indicates poor prognosis in HCC.
Collapse
Affiliation(s)
- Yuan Chen
- Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Hao Xu
- Yangzhou University Medical College, Yangzhou, Jiangsu, China
- General Surgery Department of Siyang Hospital, Suqian, Jiangsu, China
| | - Hao Tang
- Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Hongyuan Li
- Dalian Medical University, Dalian, Liaoning, China
| | - Chi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengjie Jin
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dousheng Bai
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
5
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
6
|
Al-Sisan SM, Zihlif MA, Hammad HM. Differential miRNA expression of hypoxic MCF7 and PANC-1 cells. Front Endocrinol (Lausanne) 2023; 14:1110743. [PMID: 37583428 PMCID: PMC10424510 DOI: 10.3389/fendo.2023.1110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023] Open
Abstract
Background Hypoxia plays a critical role in the tumor microenvironment by affecting cellular proliferation, metabolism, apoptosis, DNA repair, and chemoresistance. Since hypoxia provokes a distinct shift of microRNA, it is important to illustrate the relative contribution of each hypoxamiR to cancer progression. Aims The present study aims to shed light on the hypoxamiRs that are involved in pancreatic and breast cancer progression to highlight novel targets for the development of new therapies. Methods For 20 cycles, MCF7 breast cancer cells and PANC-1 pancreatic cancer cells were subjected to chronic cyclic hypoxia, which consisted of 72 hours of hypoxia followed by 24 hours of reoxygenation. After 10 and 20 cycles of hypoxia, miRNA expression alterations were profiled using RT-PCR array and further analyzed using a visual analytics platform. The MTT cell proliferation assay was used to determine hypoxic cells' chemoresistance to doxorubicin. Results Under chronic cyclic hypoxia, hypoxic PANC-1 cells have a comparable doubling time with their normoxic counterparts, whereas hypoxic MCF7 cells show a massive increase in doubling time when compared to their normoxic counterparts. Both hypoxic cell lines developed EMT-like phenotypes as well as doxorubicin resistance. According to the findings of miRNet, 6 and 10 miRNAs were shown to play an important role in enriching six hallmarks of pancreatic cancer in the 10th and 20th cycles of hypoxia, respectively, while 7 and 11 miRNAs were shown to play an important role in enriching the four hallmarks of breast cancer in the 10th and 20th cycles of hypoxia, respectively. Conclusions miR-221, miR-21, miR-155, and miR-34 were found to be involved in the potentiation of hypoxic PANC-1 hallmarks at both the 10th and 20th cycles, while miR-93, miR-20a, miR-15, and miR-17 were found to be involved in the potentiation of hypoxic MCF7 hallmarks at both the 10th and 20th cycles. This variation in miRNA expression was also connected to the emergence of an EMT-like phenotype, alterations in proliferation rates, and doxorubicin resistance. The chemosensitivity results revealed that chronic cyclic hypoxia is critical in the formation of chemoresistant phenotypes in pancreatic and breast cancer cells. miR-181a and let-7e expression disparities in PANC1, as well as miR-93, miR-34, and miR-27 expression disparities in MCF7, may be associated with the formation of chemoresistant MCF7 and PANC-1 cells following 20 cycles of chronic cyclic hypoxia. Indeed, further research is needed since the particular mechanisms that govern these processes are unknown.
Collapse
Affiliation(s)
- Sandy M. Al-Sisan
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Malek A. Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hana M. Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Stella S, Martorana F, Massimino M, Vitale SR, Manzella L, Vigneri P. Potential Therapeutic Targets for Luminal Androgen Receptor Breast Cancer: What We Know so Far. Onco Targets Ther 2023; 16:235-247. [PMID: 37056632 PMCID: PMC10089148 DOI: 10.2147/ott.s379867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Luminal Androgen Receptor Breast Cancers (LAR BCs) are characterized by a triple negative phenotype and by the expression of Androgen Receptor (AR), coupled with luminal-like genomic features. This unique BC subtype, accounting for about 10% of all triple negative BC, has raised considerable interest given its ill-defined clinical behavior and the chance to exploit AR as a therapeutic target. The complexity of AR activity in BC cells, as revealed by decades of mechanistic studies, holds promise to offer additional therapeutic options beyond mere AR inhibition. Indeed, preclinical and translational evidence showed that several pathways and mediators, including PI3K/mToR, HER2, BRCA1, cell cycle and immune modulation, can be tackled in LAR BCs. Moving from bench to bedside, several clinical trials tested anti-androgen therapies in LAR BCs, but their results are inconsistent and often disappointing. More recently, studies exploring combinations of anti-androgen agents with other targeted therapies have been designed and are currently ongoing. While the results from these trials are awaited, a concerted effort will be needed to find the biological vulnerabilities of LAR BCs which may disclose new and effective therapeutic targets, eventually improving patients' outcomes.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Correspondence: Stefania Stella, University of Catania, Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Via S. Sofia, 78, Edificio 8D/2, Catania, Italy, Tel +39 95 378 1946, Email ;
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| |
Collapse
|
8
|
Dissecting Molecular Heterogeneity of Circulating Tumor Cells (CTCs) from Metastatic Breast Cancer Patients through Copy Number Aberration (CNA) and Single Nucleotide Variant (SNV) Single Cell Analysis. Cancers (Basel) 2022; 14:cancers14163925. [PMID: 36010918 PMCID: PMC9405921 DOI: 10.3390/cancers14163925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells' (CTCs) heterogeneity contributes to counteract their introduction in clinical practice. Through single-cell sequencing we aim at exploring CTC heterogeneity in metastatic breast cancer (MBC) patients. Single CTCs were isolated using DEPArray NxT. After whole genome amplification, libraries were prepared for copy number aberration (CNA) and single nucleotide variant (SNV) analysis and sequenced using Ion GeneStudio S5 and Illumina MiSeq, respectively. CTCs demonstrate distinctive mutational signatures but retain molecular traces of their common origin. CNA profiling identifies frequent aberrations involving critical genes in pathogenesis: gains of 1q (CCND1) and 11q (WNT3A), loss of 22q (CHEK2). The longitudinal single-CTC analysis allows tracking of clonal selection and the emergence of resistance-associated aberrations, such as gain of a region in 12q (CDK4). A group composed of CTCs from different patients sharing common traits emerges. Further analyses identify losses of 15q and enrichment of terms associated with pseudopodium formation as frequent and exclusive events. CTCs from MBC patients are heterogeneous, especially concerning their mutational status. The single-cell analysis allows the identification of aberrations associated with resistance, and is a candidate tool to better address treatment strategy. The translational significance of the group populated by similar CTCs should be elucidated.
Collapse
|
9
|
Tian C, Wang Y, Song X. Prognostic Characteristics of Immune-Related Genes and the Related Regulatory Axis in Patients With Stage N+M0 Breast Cancer. Front Oncol 2022; 12:878219. [PMID: 35785160 PMCID: PMC9243266 DOI: 10.3389/fonc.2022.878219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BRCA) has the highest incidence rate among female tumours. The function of the immune system affects treatment efficacy and prognosis in patients with BRCA. However, the exact role of immune-related genes (IRGs) in stage N+M0 BRCA is unknown. We constructed a predictive risk scoring model with five IRGs (CDH1, FGFR3, INHBA, S100B, and SCG2) based on the clinical, mutation, and RNA sequencing data of individuals with stage N+M0 BRCA sourced from The Cancer Genome Atlas. Results from the Shandong Cancer Hospital and Institute validation cohort suggested that regardless of clinical stage, tumour size, or the number of lymph node metastases, this model was able to reliably discriminate low-risk patients from high-risk ones and assess the prognosis of patients with stage N+M0 BRCA, and low-risk patients could benefit more from immunotherapy than high-risk patients. In addition, significant inter-group variations in immunocyte infiltration and the tumour microenvironment were observed. Moreover, risk score and age were found to be independent factors in multivariate COX regression analysis, which influenced the outcome of patients with stage N+M0 BRCA. Based on the above findings, we plotted a prognostic nomogram. Finally, we constructed a lncRNA KCNQ1OT1-LINC00665-TUG1/miR-9-5p/CDH1 regulatory axis of the ceRNA network to explore the mechanism of BRCA progression. In summary, we conducted a systemic and extensive bioinformatics investigation and established an IRG-based prognostic scoring model. Finally, we constructed a ceRNA regulatory axis that might play a significant role in BRCA development. More research is required to confirm this result. Scoring system-based patient grouping can help predict the outcome of patients with stage N+M0 BRCA more effectively and determine their sensitivity to immunotherapies, which will aid the development of personalised therapeutic strategies and inspire the research and development of novel medications.
Collapse
Affiliation(s)
- Chonglin Tian
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yongsheng Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yongsheng Wang, ; Xianrang Song,
| | - Xianrang Song
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Yongsheng Wang, ; Xianrang Song,
| |
Collapse
|
10
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|
11
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
12
|
Chen X, Zhang H, Ou S, Chen H. Von Hippel-Lindau gene single nucleotide polymorphism (rs1642742) may be related to the occurrence and metastasis of HBV-related hepatocellular carcinoma. Medicine (Baltimore) 2021; 100:e27187. [PMID: 34477178 PMCID: PMC8415925 DOI: 10.1097/md.0000000000027187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/22/2021] [Indexed: 01/05/2023] Open
Abstract
It is well-known that microRNAs are able to regulate the expression of target mRNAs through complementary base-pairing to their 3'-untranslated regions (3'UTR) sequences. This study aimed to investigate whether single nucleotide polymorphisms resided in the 3'UTR sequences in patients with chronic hepatitis B viruses (HBV) infection are associated with the development and metastasis of hepatocellular carcinoma (HCC). Seventeen single nucleotide polymorphisms in the 3'UTR sequence of 10 genes regulated or affected by hepatitis B virus X protein were found by bioinformatics methods. Two hundred fifteen patients with HBV-related HCC and 216 patients with chronic HBV infection were recruited. Through case-control study, only found that the von Hippel-Lindau gene rs1642742 (G>A) may be associated with the occurrence and metastasis of HCC. The ORs of the frequencies of rs1642742 A allele versus G allele were 1.424 (P = .038, 95% confidence interval [CI] = 1.019-1.989) between HBV-related HCC and chronic HBV infection group and were 2.004 (P = .037, 95%CI = 1.031-3.895) between tumor metastasis and non-metastasis group, respectively. Through multivariate regression analysis, we also found that rs1642742 AA genotype was an independent risk factor for tumor metastasis (odds ratio = 2.227, 95% CI = 1.043-4.752, P = .038) in HBV-related HCC group. Our study suggested that Von Hippel-Lindau rs1642742 contributed to susceptibility to developing HCC and correlated with tumor metastasis.
Collapse
|
13
|
miR-9-5p promotes wear-particle-induced osteoclastogenesis through activation of the SIRT1/NF-κB pathway. 3 Biotech 2021; 11:258. [PMID: 33987074 DOI: 10.1007/s13205-021-02814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
To explore the potential function of miR-9-5p in wear-particle-induced osteoclastogenesis, we examined the expression of SIRT1 and miR-9-5p in particle-induced osteolysis (PIO) mice calvariae and polyethylene (PE)-induced RAW 264.7 cells and found that SIRT1 expression was downregulated while miR-9-5p expression was upregulated in both models. We then verified that miR-9-5p targets SIRT1. miR-9-5p was found to promote PE-induced osteoclast formation from RAW 264.7 cells by tartrate-resistant acid phosphatase staining and detection of osteoclast markers, and miR-9-5p activation of the SIRT1/NF-kB signaling pathway was found in cells by detecting the expression of SIRT1/NF-kB pathway-related proteins and rescue assays. In conclusion, we found that miR-9-5p activated the SIRT1/NF-κB pathway to promote wear-particle-induced osteoclastogenesis. miR-9-5p may be a useful therapeutic target for PIO remission and treatment.
Collapse
|
14
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Liu X, Tian X. Long Noncoding RNA TCONS_00068220 Promotes Breast Cancer Progression by Regulating Epithelial-Mesenchymal Transition Marker E-Cadherin. Med Sci Monit 2021; 27:e929832. [PMID: 33716295 PMCID: PMC7976663 DOI: 10.12659/msm.929832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play essential roles in the regulation of breast cancer development. We herein investigated the potential role of lncRNA TCONS_00068220 in breast cancer pathogenesis. MATERIAL AND METHODS The expression levels of TCONS_00068220 in breast cancer tissues were measured by qRT-PCR. Afterwards, TCONS_00068220 was (1) overexpressed in MCF-7 breast cancer cells, and (2) silenced in MDA-MB-231 cells. Then, CCK-8 and transwell assays were conducted to detect the impact of TCONS_00068220 on cell proliferation, migration, and invasion. The expression of the epithelial-mesenchymal transition (EMT) marker E-cadherin was detected by western blot assay after upregulation or downregulation of TCONS_00068220. RESULTS TCONS_00068220 was remarkably upregulated in breast cancer tissues compared with non-cancerous tissues. In addition, TCONS_00068220 level was significantly correlated with lymphatic metastasis, Ki67 index, clinical stage, and differentiation grade. All breast cancer cell lines displayed a higher expression level of TCONS_00068220 compared with the normal breast epithelial cell line MCF-10A. Furthermore, enhanced expression of TCONS_00068220 in MCF-7 cells promoted cell proliferation, migration, invasion, and EMT, whereas TCONS_00068220 knockdown in MDA-MB-231 cells led to the opposite results. E-cadherin was negatively regulated by TCONS_00068220 in both breast cancer tissues and cell lines. Finally, TCONS_00068220 regulated MCF-7 and MDA-MB-231 cell behaviors by downregulating E-cadherin. CONCLUSIONS TCONS_00068220 promotes breast cancer cell proliferation, migration, and invasion, while facilitating the process of EMT by interacting with E-cadherin and suppressing its expression. Therefore, it may potentially serve as an oncogene in breast cancer progression.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Breast and Thyroid Surgery, Hospital of Chinese Medicine of Taian City, Taian, Shandong, China (mainland)
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|