1
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Nakane T, Nakagawa R, Ishiguro S, Okazaki S, Mori H, Shuto Y, Yamashita K, Yachie N, Nishimasu H, Nureki O. Structure and engineering of Brevibacillus laterosporus Cas9. Commun Biol 2024; 7:803. [PMID: 38961195 PMCID: PMC11222456 DOI: 10.1038/s42003-024-06422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets complementary to an RNA guide, and is widely used as a powerful genome-editing tool. Here, we report the crystal structure of Brevibacillus laterosporus Cas9 (BlCas9, also known as BlatCas9), in complex with a guide RNA and its target DNA at 2.4-Å resolution. The structure reveals that the BlCas9 guide RNA adopts an unexpected architecture containing a triple-helix, which is specifically recognized by BlCas9, and that BlCas9 recognizes a unique N4CNDN protospacer adjacent motif through base-specific interactions on both the target and non-target DNA strands. Based on the structure, we rationally engineered a BlCas9 variant that exhibits enhanced genome- and base-editing activities with an expanded target scope in human cells. This approach may further improve the performance of the enhanced BlCas9 variant to generate useful genome-editing tools that require only a single C PAM nucleotide and can be packaged into a single AAV vector for in vivo gene therapy.
Collapse
Affiliation(s)
- Toshihiro Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Soh Ishiguro
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6S 0L4, Canada
| | - Sae Okazaki
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideto Mori
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0035, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keitaro Yamashita
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6S 0L4, Canada
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Qi T, Wang Y, Yang Y, Gao S, Liu J, Huang Q, Tian Y, Tang J, Zheng WV, Wang Y. Phage-assisted evolution of compact Cas9 variants targeting a simple NNG PAM. Nat Chem Biol 2024; 20:344-352. [PMID: 38052959 DOI: 10.1038/s41589-023-01481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 12/07/2023]
Abstract
Compact Cas9 nucleases hold great promise for therapeutic applications. Although several compact Cas9 nucleases have been developed, many genomic loci still could not be edited due to a lack of protospacer adjacent motifs (PAMs). We previously developed a compact SlugCas9 recognizing an NNGG PAM. Here we demonstrate that SlugCas9 displays comparable activity to SpCas9. We developed a simple phage-assisted evolution to engineer SlugCas9 for unique PAM requirements. Interestingly, we generated a SlugCas9 variant (SlugCas9-NNG) that could recognize an NNG PAM, expanding the targeting scope. We further developed a SlugCas9-NNG-based adenine base editor and demonstrated that it could be delivered by a single adeno-associated virus to disrupt PCSK9 splice donor and splice acceptor. These genome editors greatly enhance our ability for in vivo genome editing.
Collapse
Affiliation(s)
- Tao Qi
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Yuan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Jingtong Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
| | - Yuwen Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Yongming Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.
| |
Collapse
|
4
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
5
|
Tang N, Wu Z, Gao Y, Chen W, Wang Z, Su M, Ji W, Ji Q. Molecular Basis and Genome Editing Applications of a Compact Eubacterium ventriosum CRISPR-Cas9 System. ACS Synth Biol 2024; 13:269-281. [PMID: 38061052 DOI: 10.1021/acssynbio.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
CRISPR-Cas9 systems have been widely harnessed for diverse genome editing applications because of their ease of use and high efficiency. However, the large molecular sizes and strict PAM requirements of commonly used CRISPR-Cas9 systems restrict their broad applications in therapeutics. Here, we report the molecular basis and genome editing applications of a novel compact type II-A Eubacterium ventriosum CRISPR-Cas9 system (EvCas9) with 1107 residues and distinct 5'-NNGDGN-3' (where D represents A, T, or G) PAM specificity. We determine the cryo-EM structure of EvCas9 in a complex with an sgRNA and a target DNA, revealing the detailed PAM recognition and sgRNA and target DNA association mechanisms. Additionally, we demonstrate the robust genome editing capacity of EvCas9 in bacteria and human cells with superior fidelity compared to SaCas9 and SpCas9, and we engineer it to be efficient base editors by fusing a cytidine or adenosine deaminase. Collectively, our results facilitate further understanding of CRISPR-Cas9 working mechanisms and expand the compact CRISPR-Cas9 toolbox.
Collapse
Affiliation(s)
- Na Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaowei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengjiao Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxin Ji
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
6
|
Zhong Z, Liu G, Tang Z, Xiang S, Yang L, Huang L, He Y, Fan T, Liu S, Zheng X, Zhang T, Qi Y, Huang J, Zhang Y. Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system. Nat Commun 2023; 14:6102. [PMID: 37773156 PMCID: PMC10541446 DOI: 10.1038/s41467-023-41802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Among CRISPR-Cas genome editing systems, Streptococcus pyogenes Cas9 (SpCas9), sourced from a human pathogen, is the most widely used. Here, through in silico data mining, we have established an efficient plant genome engineering system using CRISPR-Cas9 from probiotic Lactobacillus rhamnosus. We have confirmed the predicted 5'-NGAAA-3' PAM via a bacterial PAM depletion assay and showcased its exceptional editing efficiency in rice, wheat, tomato, and Larix cells, surpassing LbCas12a, SpCas9-NG, and SpRY when targeting the identical sequences. In stable rice lines, LrCas9 facilitates multiplexed gene knockout through coding sequence editing and achieves gene knockdown via targeted promoter deletion, demonstrating high specificity. We have also developed LrCas9-derived cytosine and adenine base editors, expanding base editing capabilities. Finally, by harnessing LrCas9's A/T-rich PAM targeting preference, we have created efficient CRISPR interference and activation systems in plants. Together, our work establishes CRISPR-LrCas9 as an efficient and user-friendly genome engineering tool for diverse applications in crops and beyond.
Collapse
Affiliation(s)
- Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 225012, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225012, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225012, Yangzhou, China
| | - Zhongjie Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shuyue Xiang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, 610066, Chengdu, China
| | - Lan Huang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 225012, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225012, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225012, Yangzhou, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| | - Jian Huang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
7
|
Wu J, Tao Y, Deng D, Meng Z, Zhao Y. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell Biosci 2023; 13:93. [PMID: 37210555 DOI: 10.1186/s13578-023-01021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/25/2023] [Indexed: 05/22/2023] Open
Abstract
Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engineering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of genetic HL, and then we detail the recent achievements of CRISPR/Cas technique in disease modeling and therapeutic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in future clinical treatments.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Di Deng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoli Meng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Gao S, Wang Y, Qi T, Wei J, Hu Z, Liu J, Sun S, Liu H, Wang Y. Genome editing with natural and engineered CjCas9 orthologs. Mol Ther 2023; 31:1177-1187. [PMID: 36733251 PMCID: PMC10124074 DOI: 10.1016/j.ymthe.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/01/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
CjCas9 is one of the smallest CRISPR-associated (Cas9) nucleases for mammalian genome editing. However, it requires a long N4RYAC (R = A or G; Y = C or T) protospacer-adjacent motif (PAM), limiting its DNA targeting scope. In this study, we investigated the PAMs of three CjCas9 orthologs, including Hsp1Cas9, Hsp2Cas9, and CcuCas9, by performing a GFP-activation assay. Interestingly, Hsp1Cas9 and CcuCas9 recognized unique N4RAA and N4CNA PAMs, respectively. We further generated an Hsp1Cas9-Hsp2Cas9 chimeric Cas9 (Hsp1-Hsp2Cas9), which recognized a simple N4CY PAM. Genome-wide off-target analysis revealed that Hsp1-Hsp2Cas9 has very few off-targets compared to SpCas9. By analyzing the crystal structure of CjCas9, we identified eight mutations that can improve the specificity and generate a high-fidelity Hsp1-Hsp2Cas9-Y. Hsp1-Hsp2Cas9-Y enables the knockout of B4GALNT2 and CMAH in porcine fetal fibroblasts (PFFs). Moreover, we developed a high-fidelity Hsp1-Hsp2Cas9-KY which displayed undetectable off-targets revealed by GUIDE-seq at four tested loci. These natural and engineered Cas9 nucleases enabled efficient genome editing in multiple mammalian cells, expanding the DNA targeting scope.
Collapse
Affiliation(s)
- Siqi Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Tao Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jingjing Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Ziying Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jingtong Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Shuna Sun
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| | - Huihui Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
9
|
Wang Y, Qi T, Liu J, Yang Y, Wang Z, Wang Y, Wang T, Li M, Li M, Lu D, Chang ACY, Yang L, Gao S, Wang Y, Lan F. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. SCIENCE ADVANCES 2023; 9:eabo6405. [PMID: 36763662 PMCID: PMC9917002 DOI: 10.1126/sciadv.abo6405] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The CRISPR-Cas system can treat autosomal dominant diseases by nonhomologous end joining (NHEJ) gene disruption of mutant alleles. However, many single-nucleotide mutations cannot be discriminated from wild-type alleles by current CRISPR-Cas systems. Here, we functionally screened six Cas12j nucleases and determined Cas12j-8 as an ideal genome editor with a hypercompact size. Cas12j-8 displayed comparable activity to AsCas12a and Un1Cas12f1. Cas12j-8 is a highly specific nuclease sensitive to single-nucleotide mismatches in the protospacer adjacent motif (PAM)-proximal region. We experimentally proved that Cas12j-8 enabled allele-specific disruption of genes with a single-nucleotide polymorphism (SNP). Cas12j-8 recognizes a simple TTN PAM that provides for high target site density. In silico analysis reveals that Cas12j-8 enables allele-specific disruption of 25,931 clinically relevant variants in the ClinVar database, and 485,130,147 SNPs in the dbSNP database. Therefore, Cas12j-8 would be particularly suitable for therapeutic applications.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Tao Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jingtong Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yuan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianyi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Miaomiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing 400020, China
| | - Alex Chia Yu Chang
- Department of Cardiology and Shanghai Institute Precision Medicine, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
| | - Li Yang
- Center for Molecular Medicine, Children’s Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Feng Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
10
|
Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:315-339. [DOI: 10.1007/978-981-19-5642-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Wang S, Tao C, Mao H, Hou L, Wang Y, Qi T, Yang Y, Ong SG, Hu S, Chai R, Wang Y. Identification of SaCas9 orthologs containing a conserved serine residue that determines simple NNGG PAM recognition. PLoS Biol 2022; 20:e3001897. [PMID: 36449487 PMCID: PMC9710800 DOI: 10.1371/journal.pbio.3001897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
Due to different nucleotide preferences at target sites, no single Cas9 is capable of editing all sequences. Thus, this highlights the need to establish a Cas9 repertoire covering all sequences for efficient genome editing. Cas9s with simple protospacer adjacent motif (PAM) requirements are particularly attractive to allow for a wide range of genome editing, but identification of such Cas9s from thousands of Cas9s in the public database is a challenge. We previously identified PAMs for 16 SaCas9 orthologs. Here, we compared the PAM-interacting (PI) domains in these orthologs and found that the serine residue corresponding to SaCas9 N986 was associated with the simple NNGG PAM requirement. Based on this discovery, we identified five additional SaCas9 orthologs that recognize the NNGG PAM. We further identified three amino acids that determined the NNGG PAM requirement of SaCas9. Finally, we engineered Sha2Cas9 and SpeCas9 to generate high-fidelity versions of Cas9s. Importantly, these natural and engineered Cas9s displayed high activities and distinct nucleotide preferences. Our study offers a new perspective to identify SaCas9 orthologs with NNGG PAM requirements, expanding the Cas9 repertoire.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huilin Mao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linghui Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sang-Ging Ong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- * E-mail: (SH); (RC); (YW)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail: (SH); (RC); (YW)
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- * E-mail: (SH); (RC); (YW)
| |
Collapse
|
12
|
Wei J, Hou L, Liu J, Wang Z, Gao S, Qi T, Gao S, Sun S, Wang Y. Closely related type II-C Cas9 orthologs recognize diverse PAMs. eLife 2022; 11:77825. [PMID: 35959889 PMCID: PMC9433092 DOI: 10.7554/elife.77825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The RNA-guided CRISPR/Cas9 system is a powerful tool for genome editing, but its targeting scope is limited by the protospacer-adjacent motif (PAM). To expand the target scope, it is crucial to develop a CRISPR toolbox capable of recognizing multiple PAMs. Here, using a GFP-activation assay, we tested the activities of 29 type II-C orthologs closely related to Nme1Cas9, 25 of which are active in human cells. These orthologs recognize diverse PAMs with variable length and nucleotide preference, including purine-rich, pyrimidine-rich, and mixed purine and pyrimidine PAMs. We characterized in depth the activity and specificity of Nsp2Cas9. We also generated a chimeric Cas9 nuclease that recognizes a simple N4C PAM, representing the most relaxed PAM preference for compact Cas9s to date. These Cas9 nucleases significantly enhance our ability to perform allele-specific genome editing.
Collapse
Affiliation(s)
- Jingjing Wei
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Linghui Hou
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jingtong Liu
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Siqi Gao
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Tao Qi
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuna Sun
- National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yongming Wang
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wang S, Mao H, Hou L, Hu Z, Wang Y, Qi T, Tao C, Yang Y, Zhang C, Li M, Liu H, Hu S, Chai R, Wang Y. Compact SchCas9 Recognizes the Simple NNGR PAM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104789. [PMID: 34874112 PMCID: PMC8811835 DOI: 10.1002/advs.202104789] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Indexed: 05/20/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/SaCas9 is the most popular tool for in vivo genome editing due to its high efficiency and small genome. The authors previously developed four SaCas9 orthologs as genome-editing tools. Here, to expand the targeting scope, they investigate the diversity of protospacer adjacent motifs (PAMs) by screening a list of 16 SaCas9 orthologs, twelve of which display editing activity in mammalian cells. They recognize five types of PAMs: NNGRRT, NNGRRR, NNGRC, NNGA, and NNGR. Importantly, SchCas9 recognizes the simple NNGR PAM, representing the most relaxed PAM preference of compact Cas9s to date. It is further demonstrated that SchCas9 enables efficient genome editing in multiple human cell lines. Altogether, these compact Cas9 tools offer a new option for both basic research and clinical applications.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Huilin Mao
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Linghui Hou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Ziying Hu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Yao Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Tao Qi
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Chen Tao
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Yuan Yang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Chengdong Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Miaomiao Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Huihui Liu
- Experimental Center of Forestry in North ChinaChinese Academy of ForestryBeijing102300China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceCollaborative Innovation Center of HematologyState Key Laboratory of Radiation Medicine and ProtectionMedical CollegeSoochow UniversitySuzhou215000China
| | - Renjie Chai
- State Key Laboratory of BioelectronicsSchool of Life Sciences and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Yongming Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghai200438China
| |
Collapse
|
14
|
Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better? Gene Ther 2022; 29:458-463. [DOI: 10.1038/s41434-022-00319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
|
15
|
Tussipkan D, Manabayeva SA. Employing CRISPR/Cas Technology for the Improvement of Potato and Other Tuber Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:747476. [PMID: 34764969 PMCID: PMC8576567 DOI: 10.3389/fpls.2021.747476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 05/07/2023]
Abstract
New breeding technologies have not only revolutionized biological science, but have also been employed to generate transgene-free products. Genome editing is a powerful technology that has been used to modify genomes of several important crops. This review describes the basic mechanisms, advantages and disadvantages of genome editing systems, such as ZFNs, TALENs, and CRISPR/Cas. Secondly, we summarize in detail all studies of the CRISPR/Cas system applied to potato and other tuber crops, such as sweet potato, cassava, yam, and carrot. Genes associated with self-incompatibility, abiotic-biotic resistance, nutrient-antinutrient content, and post-harvest factors targeted utilizing the CRISPR/Cas system are analyzed in this review. We hope that this review provides fundamental information that will be useful for future breeding of tuber crops to develop novel cultivars.
Collapse
Affiliation(s)
| | - Shuga A. Manabayeva
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| |
Collapse
|
16
|
Recent advances in CRISPR technologies for genome editing. Arch Pharm Res 2021; 44:537-552. [PMID: 34164771 DOI: 10.1007/s12272-021-01336-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, and its development into a set of powerful tools for manipulating the genome, has revolutionized genome editing. Precise, targeted CRISPR/Cas-based genome editing has become the most widely used platform in organisms ranging from plants to animals. The CRISPR/Cas system has been extensively modified to increase its efficiency and fidelity. In addition, the fusion of various protein motifs to Cas effector proteins has facilitated diverse set of genetic manipulations, such as base editing, transposition, recombination, and epigenetic regulation. The CRISPR/Cas system is undergoing continuous development to overcome current limitations, including off-target effects, narrow targeting scope, and issues associated with the delivery of CRISPR components for genome engineering and therapeutic approaches. Here, we review recent progress in a diverse array of CRISPR/Cas-based tools. We also describe limitations and concerns related to the use of CRISPR/Cas technologies.
Collapse
|