1
|
Rughetti A, Bharti S, Savai R, Barmpoutsi S, Weigert A, Atre R, Siddiqi F, Sharma R, Khabiya R, Hirani N, Baig MS. Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways. Future Sci OA 2024; 10:2387961. [PMID: 39248050 PMCID: PMC11385170 DOI: 10.1080/20565623.2024.2387961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Laboratory of Tumor Immunology & Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Shreya Bharti
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
| | - Andreas Weigert
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, D-60323, Germany
| | - Rajat Atre
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Faaiza Siddiqi
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
2
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell BA, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes Reprogrammed by 4-PBA Potently Contribute to the Resolution of Inflammation and Atherosclerosis. Circ Res 2024; 135:856-872. [PMID: 39224974 PMCID: PMC11424066 DOI: 10.1161/circresaha.124.325023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. METHODS Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed ApoE-/- mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed ApoE-/- mice. RESULTS In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo. CONCLUSIONS Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ling Xie
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Jacqueline Hou
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Feng Xu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Xian Chen
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| |
Collapse
|
3
|
Cao D, Sun W, Li X, Jian L, Zhou X, Bode AM, Luo X. The role of novel protein acylations in cancer. Eur J Pharmacol 2024; 979:176841. [PMID: 39033839 DOI: 10.1016/j.ejphar.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Novel protein acylations are a class of protein post-translational modifications, such as lactylation, succinylation, crotonylation, palmitoylation, and β-hydroxybutyrylation. These acylation modifications are common in prokaryotes and eukaryotes and play pivotal roles in various key cellular processes by regulating gene transcription, protein subcellular localization, stability and activity, protein-protein interactions, and protein-DNA interactions. The diversified acylations are closely associated with various human diseases, especially cancer. In this review, we provide an overview of the distinctive characteristics, effects, and regulatory factors of novel protein acylations. We also explore the various mechanisms through which novel protein acylations are involved in the occurrence and progression of cancer. Furthermore, we discuss the development of anti-cancer drugs targeting novel acylations, offering promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Dan Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Sun
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinyi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lian Jian
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinran Zhou
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Xi X, Zhao W. Anti-Tumor Potential of Post-Translational Modifications of PD-1. Curr Issues Mol Biol 2024; 46:2119-2132. [PMID: 38534752 DOI: 10.3390/cimb46030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Programmed cell death protein-1 (PD-1) is a vital immune checkpoint molecule. The location, stability, and protein-protein interaction of PD-1 are significantly influenced by post-translational modification (PTM) of proteins. The biological information of PD-1, including its gene and protein structures and the PD-1/PD-L1 signaling pathway, was briefly reviewed in this review. Additionally, recent research on PD-1 post-translational modification, including the study of ubiquitination, glycosylation, phosphorylation, and palmitoylation, was summarized, and research strategies for PD-1 PTM drugs were concluded. At present, only a part of PD-1/PD-L1 treated patients (35-45%) are benefited from immunotherapies, and novel strategies targeting PTM of PD-1/PD-L1 may be important for anti-PD-1/PD-L1 non-responders (poor responders).
Collapse
Affiliation(s)
- Xiaoming Xi
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
5
|
Sales Conniff A, Singh J, Heller R, Heller LC. Pulsed Electric Fields Induce STING Palmitoylation and Polymerization Independently of Plasmid DNA Electrotransfer. Pharmaceutics 2024; 16:363. [PMID: 38543257 PMCID: PMC10975742 DOI: 10.3390/pharmaceutics16030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Gene therapy approaches may target skeletal muscle due to its high protein-expressing nature and vascularization. Intramuscular plasmid DNA (pDNA) delivery via pulsed electric fields (PEFs) can be termed electroporation or electrotransfer. Nonviral delivery of plasmids to cells and tissues activates DNA-sensing pathways. The central signaling complex in cytosolic DNA sensing is the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING). The effects of pDNA electrotransfer on the signaling of STING, a key adapter protein, remain incompletely characterized. STING undergoes several post-translational modifications which modulate its function, including palmitoylation. This study demonstrated that in mouse skeletal muscle, STING was constitutively palmitoylated at two sites, while an additional site was modified following electroporation independent of the presence of pDNA. This third palmitoylation site correlated with STING polymerization but not with STING activation. Expression of several palmitoyl acyltransferases, including zinc finger and DHHC motif containing 1 (zDHHC1), coincided with STING activation. Expression of several depalmitoylases, including palmitoyl protein thioesterase 2 (PPT2), was diminished in all PEF application groups. Therefore, STING may not be regulated by active modification by palmitate after electroporation but inversely by the downregulation of palmitate removal. These findings unveil intricate molecular changes induced by PEF application.
Collapse
Affiliation(s)
| | | | | | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA; (A.S.C.); (J.S.); (R.H.)
| |
Collapse
|
6
|
Chen HW, Zhang YG, Zhang WJ, Su J, Wu H, Fu ZF, Cui M. Palmitoylation of hIFITM1 inhibits JEV infection and contributes to BBB stabilization. Int J Biol Macromol 2024; 262:129731. [PMID: 38278394 DOI: 10.1016/j.ijbiomac.2024.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection. Depletion of hIFITM1 with CRISPR/Cas9 in hBMECs enhanced JEV replication, while overexpression of hIFITM1 restricted the viruses. Additionally, overexpression of hIFITM1 promoted the monolayer formation of hBMECs with a better integrity and a higher transendothelial electrical resistance (TEER), and reduced the penetration of JEV across the BBB. However, the function of hIFITM1 is governed by palmitoylation. Mutations of palmitoylation residues in conserved CD225 domain of hIFITM1 impaired its antiviral capacity. Moreover, mutants retained hIFITM1 in the cytoplasm and lessened its interaction with tight junction protein Occludin. Taken together, palmitoylation of hIFITM1 is essential for its antiviral activity in hBMECs, and more notably, for the maintenance of BBB homeostasis.
Collapse
Affiliation(s)
- Hao-Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ya-Ge Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei-Jia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen-Fang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
7
|
Guo R, Liu J, Min X, Zeng W, Shan B, Zhang M, He Z, Zhang Y, He K, Yuan J, Xu D. Reduction of DHHC5-mediated beclin 1 S-palmitoylation underlies autophagy decline in aging. Nat Struct Mol Biol 2024; 31:232-245. [PMID: 38177673 DOI: 10.1038/s41594-023-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/26/2023] [Indexed: 01/06/2024]
Abstract
Autophagy is a lysosome-dependent degradation pathway essential for cellular homeostasis, which decreases with age. However, it is unclear how aging induces autophagy decline. Here we show the role of protein S-palmitoylation in autophagy. We identify the palmitoyl acyltransferase DHHC5 as a regulator of autophagy by mediating the palmitoylation of beclin 1, which in turn promotes the formation of ATG14L-containing class III phosphatidylinositol-3-kinase complex I and its lipid kinase activity by promoting the hydrophobic interactions between beclin 1 and adapter proteins ATG14L and VPS15. In aging brains of human and nonhuman primate, the levels of DHHC5 exhibit a marked decrease in expression. We show that DHHC5 deficiency in neurons leads to reduced cellular protein homeostasis in two established murine models of Alzheimer's disease, which exaggerates neurodegeneration in an autophagy-dependent manner. These findings identify reduction of DHHC5-mediated beclin 1 S-palmitoylation as an underlying mechanism by which aging induces autophagy decline.
Collapse
Affiliation(s)
- Rui Guo
- College of Life Sciences, Nankai University, Tianjin, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
8
|
Liao D, Huang Y, Liu D, Zhang H, Shi X, Li X, Luo P. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol 2024; 14:1342830. [PMID: 38293675 PMCID: PMC10824933 DOI: 10.3389/fphar.2023.1342830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
S-palmitoylation is a reversible posttranslational modification, and the palmitoylation reaction in human-derived cells is mediated by the zDHHC family, which is composed of S-acyltransferase enzymes that possess the DHHC (Asp-His-His-Cys) structural domain. zDHHC proteins form an autoacylation intermediate, which then attaches the fatty acid to cysteine a residue in the target protein. zDHHC proteins sublocalize in different neuronal structures and exert dif-ferential effects on neurons. In humans, many zDHHC proteins are closely related to human neu-rological disor-ders. This review focuses on a variety of neurological disorders, such as AD (Alz-heimer's disease), HD (Huntington's disease), SCZ (schizophrenia), XLID (X-linked intellectual disability), attention deficit hyperactivity disorder and glioma. In this paper, we will discuss and summarize the research progress regarding the role of zDHHC proteins in these neu-rological disorders.
Collapse
Affiliation(s)
- Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Life Science, Northwest University, Xi’an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
9
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell B, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563200. [PMID: 37961551 PMCID: PMC10634693 DOI: 10.1101/2023.10.19.563200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
|
10
|
Miao Y, Wu X, Xue X, Ma X, Yang L, Zeng X, Hu Y, Dai Y, Wei Z. Morin, the PPARγ agonist, inhibits Th17 differentiation by limiting fatty acid synthesis in collagen-induced arthritis. Cell Biol Toxicol 2023; 39:1433-1452. [PMID: 36121554 DOI: 10.1007/s10565-022-09769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
T helper (Th) 17 cells highly contribute to the immunopathology of rheumatoid arthritis. Morin, a natural flavonoid, owns well anti-arthritic action but unclear effect on Th17 differentiation. This study tried to solve this issue and explore the mechanisms in view of cellular metabolism. Naïve CD4+ T cells were treated with anti-CD3/CD28 along with Th17-inducing cytokines. Morin was shown to block Th17 differentiation without affecting cell viability even when Foxp3 was dampened. The mechanisms were ascribed to the limited fatty acid synthesis by restricting FASN transcription, as indicated by metabolomics analysis, nile red staining, detection of triglycerides, FASN overexpression, and addition of palmitic acid. Moreover, morin had slight effect on cell apoptosis and protein palmitoylation during Th17 differentiation, but blocked the binding of RORγt to promoter and CNS2 region of Il17a gene. Oleic acid rescued the inhibition of morin on RORγt function, and Th17-inducing cytokines could not induce RORγt function in SCD1-defficient cells, suggesting that oleic acid but not palmitic acid was the direct effector in the action of morin. Then, PPARγ was identified as the target of morin, and GW9662 or PPARγ CRISPR/Cas9 KO plasmid weakened its above-mentioned effects. The transrepression of FASN by morin was owing to physical interaction between PPARγ and Sp1, and the importance of Sp1 in Th17 differentiation was confirmed by siSp1. Finally, the effects and mechanisms for morin-dampened Th17 responses were confirmed in collagen-induced arthritis (CIA) mice. Collectively, morin inhibited Th17 differentiation and alleviated CIA by limiting fatty acid synthesis subsequent to PPARγ activation.
Collapse
Affiliation(s)
- Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xinru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xingyu Ma
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yuxiao Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
11
|
Wen J, Wan L, Dong X. Novel peripheral blood diagnostic biomarkers screened by machine learning algorithms in ankylosing spondylitis. Front Genet 2022; 13:1032010. [PMID: 36386830 PMCID: PMC9663919 DOI: 10.3389/fgene.2022.1032010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown etiology that is hard to diagnose early. Therefore, it is imperative to explore novel biomarkers that may contribute to the easy and early diagnosis of AS. Methods: Common differentially expressed genes between normal people and AS patients in GSE73754 and GSE25101 were screened by machine learning algorithms. A diagnostic model was established by the hub genes that were screened. Then, the model was validated in several data sets. Results: IL2RB and ZDHHC18 were screened using machine learning algorithms and established as a diagnostic model. Nomograms suggested that the higher the expression of ZDHHC18, the higher was the risk of AS, while the reverse was true for IL2RB in vivo. C-indexes of the model were no less than 0.84 in the validation sets. Calibration analyses suggested high prediction accuracy of the model in training and validation cohorts. The area under the curve (AUC) values of the model in GSE73754, GSE25101, GSE18781, and GSE11886 were 0.86, 0.84, 0.85, and 0.89, respectively. The decision curve analyses suggested a high net benefit offered by the model. Functional analyses of the differentially expressed genes indicated that they were mainly clustered in immune response-related processes. Immune microenvironment analyses revealed that the neutrophils were expanded and activated in AS while some T cells were decreased. Conclusion: IL2RB and ZDHHC18 are potential blood biomarkers of AS, which might be used for the early diagnosis of AS and serve as a supplement to the existing diagnostic methods. Our study deepens the insight into the pathogenesis of AS.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, China,JXHC Key Laboratory of Digital Orthopedics, Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, China,JXHC Key Laboratory of Digital Orthopedics, Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Xieping Dong,
| |
Collapse
|
12
|
Guérin A, Angebault C, Kinet S, Cazevieille C, Rojo M, Fauconnier J, Lacampagne A, Mourier A, Taylor N, de Santa Barbara P, Faure S. LIX1-mediated changes in mitochondrial metabolism control the fate of digestive mesenchyme-derived cells. Redox Biol 2022; 56:102431. [PMID: 35988446 PMCID: PMC9420520 DOI: 10.1016/j.redox.2022.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells. LIX1 is tightly anchored to the outer membrane of mitochondria. LIX1 mitochondrial localization is mediated by S-palmitoylation on cysteine 84. LIX1 knock-down reduces the stability of the mitochondrial proteins PHB2 and OPA1 and impairs cristae organization. Redox signaling modulations regulate YAP1/TAZ activity and control fate commitment of digestive mesenchyme-derived cells.
Collapse
Affiliation(s)
- Amandine Guérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Claire Angebault
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Chantal Cazevieille
- Institut de Neurosciences de Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Manuel Rojo
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Arnaud Mourier
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
13
|
Tien CF, Tsai WT, Chen CH, Chou HJ, Zhang MM, Lin JJ, Lin EJ, Dai SS, Ping YH, Yu CY, Kuo YP, Tsai WH, Chen HW, Yu GY. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience 2022; 25:104709. [PMID: 35813875 PMCID: PMC9250814 DOI: 10.1016/j.isci.2022.104709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the 611LYQD614 and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that 611LY612 mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection. 611LY612 mutation alters the glycosylation pattern of the SARS-CoV-2 S protein 611LY612 mutation reduces S protein surface expression level Palmitoylation targets mature S protein to the Golgi and plasma membrane Palmitoylation is required for pseudovirus and SARS-CoV-2 production
Collapse
|
14
|
Yang X, Zheng E, Chatterjee V, Ma Y, Reynolds A, Villalba N, Wu MH, Yuan SY. Protein palmitoylation regulates extracellular vesicle production and function in sepsis. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e50. [PMID: 38419739 PMCID: PMC10901530 DOI: 10.1002/jex2.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 06/19/2022] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are bioactive membrane-encapsulated particles generated by a series of events involving membrane budding, fission and fusion. Palmitoylation, mediated by DHHC palmitoyl acyltransferases, is a lipidation reaction that increases protein lipophilicity and membrane localization. Here, we report palmitoylation as a novel regulator of EV formation and function during sepsis. Our results showed significantly decreased circulating EVs in mice with DHHC21 functional deficiency (Zdhhc21dep/dep), compared to wild-type (WT) mice 24 h after septic injury. Furthermore, WT and Zdhhc21dep/dep EVs displayed distinct palmitoyl-proteomic profiles. Ingenuity pathway analysis indicated that sepsis altered several inflammation related pathways expressed in EVs, among which the most significantly activated was the complement pathway; however, this sepsis-induced complement enrichment in EVs was greatly blunted in Zdhhc21dep/dep EVs. Functionally, EVs isolated from WT mice with sepsis promoted neutrophil adhesion, transmigration, and neutrophil extracellular trap production; these effects were significantly attenuated by DHHC21 loss-of-function. Furthermore, Zdhhc21dep/dep mice displayed reduced neutrophil infiltration in lungs and improved survival after CLP challenges. These findings indicate that blocking palmitoylation via DHHC21 functional deficiency can reduce sepsis-stimulated production of complement-enriched EVs and attenuates their effects on neutrophil activity.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Ethan Zheng
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Yonggang Ma
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Amanda Reynolds
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Nuria Villalba
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Mack H. Wu
- Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and PhysiologyUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
- Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
15
|
Le Menn G, Jabłońska A, Chen Z. The effects of post-translational modifications on Th17/Treg cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119223. [PMID: 35120998 DOI: 10.1016/j.bbamcr.2022.119223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T (Treg) cells and Th17 cells are subsets of CD4+ T cells which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg cell balance was shown to be implicated in the development and progression of several disorders such as autoimmune disease, inflammatory disease, and cancer. Multiple factors, including T cell receptor (TCR) signals, cytokines, metabolic and epigenetic regulators can influence the differentiation of Th17 and Treg cells and affect their balance. Accumulating evidence indicates that the activity of key molecules such as forkhead box P3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and signal transducer and activator of transcription (STAT)s are modulated by the number of post-translational modifications (PTMs) such as phosphorylation, methylation, nitrosylation, acetylation, glycosylation, lipidation, ubiquitination, and SUMOylation. PTMs might affect the protein folding efficiency and protein conformational stability, and consequently determine protein structure, localization, and function. Here, we review the recent progress in our understanding of how PTMs modify the key molecules involved in the Th17/Treg cell differentiation, regulate the Th17/Treg balance, and initiate autoimmune diseases caused by dysregulation of the Th17/Treg balance. A better understanding of Th17/Treg regulation may help to develop novel potential therapeutics to treat immune-related diseases.
Collapse
Affiliation(s)
- Gwenaëlle Le Menn
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| |
Collapse
|
16
|
Bu J, Zhong W, Li M, He S, Zhang M, Zhang Y, Li Y. CD82 palmitoylation site mutations at Cys5+Cys74 affect EGFR internalization and metabolism through recycling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:400-408. [PMID: 35538033 PMCID: PMC9828285 DOI: 10.3724/abbs.2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetraspanin CD82 often participates in regulating the function of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met). Palmitoylation is a post-translational modification that contributes to tetraspanin web formation and affects tetraspanin-dependent cell signaling. However, the molecular mechanisms by which CD82 palmitoylation affects the localization and stability of EGFR and c-Met have not yet been elucidated. This study focuses on the expression and distribution of EGFR and c-Met in breast cancer as well as the related metabolic pathways and molecular mechanisms associated with different CD82 palmitoylation site mutations. The results show that CD82 with a palmitoylation mutation at Cys5+Cys74 can promote the internalization of EGFR. EGFR is internalized and strengthened by direct binding to CD82 with the tubulin assistance and located at the recycling endosome. After studying the recycling pathway marker proteins Rab11a and FIP2, we found that formation of the EGFR/CD82/Rab11a/FIP2 complex promotes the internalization and metabolism of EGFR through the recycling pathway and results in the re-expression of EGFR and CD82 on the cell membrane.
Collapse
Affiliation(s)
- Jingya Bu
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Weiliang Zhong
- Department of Orthopaedics Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116011China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalian116011China
| | - Meixian Li
- Department of Clinical LaboratoryJiangxi Maternal and Child Health HospitalNanchang330000China.
| | - Shuiqing He
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Mingzhe Zhang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Yu Zhang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Ying Li
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China,Correspondence address. Tel: +86-17709875388; E-mail:
| |
Collapse
|
17
|
Zhang Y, Qin Z, Sun W, Chu F, Zhou F. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol 2021; 12:661202. [PMID: 34557182 PMCID: PMC8453015 DOI: 10.3389/fimmu.2021.661202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protein S-palmitoylation is a covalent and reversible lipid modification that specifically targets cysteine residues within many eukaryotic proteins. In mammalian cells, the ubiquitous palmitoyltransferases (PATs) and serine hydrolases, including acyl protein thioesterases (APTs), catalyze the addition and removal of palmitate, respectively. The attachment of palmitoyl groups alters the membrane affinity of the substrate protein changing its subcellular localization, stability, and protein-protein interactions. Forty years of research has led to the understanding of the role of protein palmitoylation in significantly regulating protein function in a variety of biological processes. Recent global profiling of immune cells has identified a large body of S-palmitoylated immunity-associated proteins. Localization of many immune molecules to the cellular membrane is required for the proper activation of innate and adaptive immune signaling. Emerging evidence has unveiled the crucial roles that palmitoylation plays to immune function, especially in partitioning immune signaling proteins to the membrane as well as to lipid rafts. More importantly, aberrant PAT activity and fluctuations in palmitoylation levels are strongly correlated with human immunologic diseases, such as sensory incompetence or over-response to pathogens. Therefore, targeting palmitoylation is a novel therapeutic approach for treating human immunologic diseases. In this review, we discuss the role that palmitoylation plays in both immunity and immunologic diseases as well as the significant potential of targeting palmitoylation in disease treatment.
Collapse
|
18
|
Yang X, Zheng E, Ma Y, Chatterjee V, Villalba N, Breslin JW, Liu R, Wu MH, Yuan SY. DHHC21 deficiency attenuates renal dysfunction during septic injury. Sci Rep 2021; 11:11146. [PMID: 34045489 PMCID: PMC8159935 DOI: 10.1038/s41598-021-89983-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Renal dysfunction is one of the most common complications of septic injury. One critical contributor to septic injury-induced renal dysfunction is renal vascular dysfunction. Protein palmitoylation serves as a novel regulator of vascular function. Here, we examined whether palmitoyl acyltransferase (PAT)-DHHC21 contributes to septic injury-induced renal dysfunction through regulating renal hemodynamics. Multispectral optoacoustic imaging showed that cecal ligation and puncture (CLP)-induced septic injury caused impaired renal excretion, which was improved in DHHC21 functional deficient (Zdhhc21dep/dep) mice. DHHC21 deficiency attenuated CLP-induced renal pathology, characterized by tissue structural damage and circulating injury markers. Importantly, DHHC21 loss-of-function led to better-preserved renal perfusion and oxygen saturation after CLP. The CLP-caused reduction in renal blood flow was also ameliorated in Zdhhc21dep/dep mice. Next, CLP promoted the palmitoylation of vascular α1-adrenergic receptor (α1AR) and the activation of its downstream effector ERK, which were blunted in Zdhhc21dep/dep mice. Vasoreactivity analysis revealed that renal arteries from Zdhhc21dep/dep mice displayed reduced constriction response to α1AR agonist phenylephrine compared to those from wild-type mice. Consistently, inhibiting PATs with 2-bromopalmitate caused a blunted vasoconstriction response to phenylephrine in small arteries isolated from human kidneys. Therefore, DHHC21 contributes to impaired renal perfusion and function during septic injury via promoting α1AR palmitoylation-associated vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA. .,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA.
| |
Collapse
|
19
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|