1
|
Attar S, Browning VE, Krebs M, Liu Y, Nichols EK, Tsue AF, Shechner DM, Shendure J, Lieberman JA, Schweppe DK, Akilesh S, Beliveau BJ. Efficient and highly amplified imaging of nucleic acid targets in cellular and histopathological samples with pSABER. Nat Methods 2024:10.1038/s41592-024-02512-2. [PMID: 39548245 DOI: 10.1038/s41592-024-02512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
In situ hybridization (ISH) is a powerful tool for investigating the spatial arrangement of nucleic acid targets in fixed samples. ISH is typically visualized using fluorophores to allow high sensitivity and multiplexing or with colorimetric labels to facilitate covisualization with histopathological stains. Both approaches benefit from signal amplification, which makes target detection effective, rapid and compatible with a broad range of optical systems. Here, we introduce a unified technical platform, termed 'pSABER', for the amplification of ISH signals in cell and tissue systems. pSABER decorates the in situ target with concatemeric binding sites for a horseradish peroxidase-conjugated oligonucleotide, enabling the localized deposition of fluorescent or colorimetric substrates. We demonstrate that pSABER effectively labels DNA and RNA targets in cultured cells and FFPE specimens. Furthermore, pSABER can achieve fivefold signal amplification over conventional signal amplification by exchange reaction (SABER) and can be serially multiplexed using solution exchange. Therefore, by linking nucleic acid detection to robust signal amplification capable of diverse readouts, pSABER will have broad utility in research and clinical settings.
Collapse
Affiliation(s)
- Sahar Attar
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| | - Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Wiedenmann M, Barch M, Chang PS, Giltnane J, Risom T, Zijlstra A. An Immunofluorescence-Guided Segmentation Model in Hematoxylin and Eosin Images Is Enabled by Tissue Artifact Correction Using a Cycle-Consistent Generative Adversarial Network. Mod Pathol 2024; 37:100591. [PMID: 39147031 DOI: 10.1016/j.modpat.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Despite recent advances, the adoption of computer vision methods into clinical and commercial applications has been hampered by the limited availability of accurate ground truth tissue annotations required to train robust supervised models. Generating such ground truth can be accelerated by annotating tissue molecularly using immunofluorescence (IF) staining and mapping these annotations to a post-IF hematoxylin and eosin (H&E) (terminal H&E) stain. Mapping the annotations between IF and terminal H&E increases both the scale and accuracy by which ground truth could be generated. However, discrepancies between terminal H&E and conventional H&E caused by IF tissue processing have limited this implementation. We sought to overcome this challenge and achieve compatibility between these parallel modalities using synthetic image generation, in which a cycle-consistent generative adversarial network was applied to transfer the appearance of conventional H&E such that it emulates terminal H&E. These synthetic emulations allowed us to train a deep learning model for the segmentation of epithelium in terminal H&E that could be validated against the IF staining of epithelial-based cytokeratins. The combination of this segmentation model with the cycle-consistent generative adversarial network stain transfer model enabled performative epithelium segmentation in conventional H&E images. The approach demonstrates that the training of accurate segmentation models for the breadth of conventional H&E data can be executed free of human expert annotations by leveraging molecular annotation strategies such as IF, so long as the tissue impacts of the molecular annotation protocol are captured by generative models that can be deployed prior to the segmentation process.
Collapse
Affiliation(s)
- Marcel Wiedenmann
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Mariya Barch
- Department of Research Pathology, Genentech Inc, South San Francisco, California
| | - Patrick S Chang
- Department of Research Pathology, Genentech Inc, South San Francisco, California
| | - Jennifer Giltnane
- Department of Research Pathology, Genentech Inc, South San Francisco, California
| | - Tyler Risom
- Department of Research Pathology, Genentech Inc, South San Francisco, California.
| | - Andries Zijlstra
- Department of Research Pathology, Genentech Inc, South San Francisco, California; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Pham T, Chen Y, Labaer J, Guo J. Ultrasensitive and Multiplexed Protein Imaging with Clickable and Cleavable Fluorophores. Anal Chem 2024; 96:7281-7288. [PMID: 38663032 DOI: 10.1021/acs.analchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction, and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity, or are technically demanding. To tackle these issues, here, we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through repeated cycles of target staining, fluorescence imaging, and fluorophore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ∼820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed that different subregions of the tissue are composed of cells from specific clusters.
Collapse
Affiliation(s)
- Thai Pham
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yi Chen
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
4
|
Pham T, Chen Y, Labaer J, Guo J. Ultrasensitive and multiplexed protein imaging with clickable and cleavable fluorophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563323. [PMID: 37961266 PMCID: PMC10634699 DOI: 10.1101/2023.10.20.563323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity or technically demanding. To tackle these issues, here we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through reiterative cycles of target staining, fluorescence imaging, and fluoropohore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in a human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ~820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed different subregions of the tissue are composed of cells from specific clusters.
Collapse
Affiliation(s)
- Thai Pham
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yi Chen
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Labaer
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jia Guo
- Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
KIM S, KAMARULZAMAN L, TANIGUCHI Y. Recent methodological advances towards single-cell proteomics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:306-327. [PMID: 37673661 PMCID: PMC10749393 DOI: 10.2183/pjab.99.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 09/08/2023]
Abstract
Studying the central dogma at the single-cell level has gained increasing attention to reveal hidden cell lineages and functions that cannot be studied using traditional bulk analyses. Nonetheless, most single-cell studies exploiting genomic and transcriptomic levels fail to address information on proteins that are central to many important biological processes. Single-cell proteomics enables understanding of the functional status of individual cells and is particularly crucial when the specimen is composed of heterogeneous entities of cells. With the growing importance of this field, significant methodological advancements have emerged recently. These include miniaturized and automated sample preparation, multi-omics analyses, and combined analyses of multiple techniques such as mass spectrometry and microscopy. Moreover, artificial intelligence and single-molecule detection technologies have advanced throughput and improved sensitivity limitations, respectively, over conventional methods. In this review, we summarize cutting-edge methodologies for single-cell proteomics and relevant emerging technologies that have been reported in the last 5 years, and provide an outlook on this research field.
Collapse
Affiliation(s)
- Sooyeon KIM
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Latiefa KAMARULZAMAN
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuichi TANIGUCHI
- Laboratory for Cell Systems Control, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-ku, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Ji F, Hur M, Hur S, Wang S, Sarkar P, Shao S, Aispuro D, Cong X, Hu Y, Li Z, Xue M. Multiplex Protein Imaging through PACIFIC: Photoactive Immunofluorescence with Iterative Cleavage. ACS BIO & MED CHEM AU 2023; 3:283-294. [PMID: 37363079 PMCID: PMC10288499 DOI: 10.1021/acsbiomedchemau.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023]
Abstract
Multiplex protein imaging technologies enable deep phenotyping and provide rich spatial information about biological samples. Existing methods have shown great success but also harbored trade-offs between various pros and cons, underscoring the persisting necessity to expand the imaging toolkits. Here we present PACIFIC: photoactive immunofluorescence with iterative cleavage, a new modality of multiplex protein imaging methods. PACIFIC achieves iterative multiplexing by implementing photocleavable fluorophores for antibody labeling with one-step spin-column purification. PACIFIC requires no specialized instrument, no DNA encoding, or chemical treatments. We demonstrate that PACIFIC can resolve cellular heterogeneity in both formalin-fixed paraffin-embedded (FFPE) samples and fixed cells. To further highlight how PACIFIC assists discovery, we integrate PACIFIC with live-cell tracking and identify phosphor-p70S6K as a critical driver that governs U87 cell mobility. Considering the cost, flexibility, and compatibility, we foresee that PACIFIC can confer deep phenotyping capabilities to anyone with access to traditional immunofluorescence platforms.
Collapse
Affiliation(s)
- Fei Ji
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Moises Hur
- Martin
Luther King Jr High School, Riverside, California 92508, United States
| | - Sungwon Hur
- Martin
Luther King Jr High School, Riverside, California 92508, United States
| | - Siwen Wang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Priyanka Sarkar
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Shiqun Shao
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Desiree Aispuro
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Xu Cong
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Yanhao Hu
- Diamond
Bar High School, Diamond
Bar, California 91765, United States
| | - Zhonghan Li
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Shahidehpour RK, Nelson AS, Sanders LG, Embry CR, Nelson PT, Bachstetter AD. The localization of molecularly distinct microglia populations to Alzheimer's disease pathologies using QUIVER. Acta Neuropathol Commun 2023; 11:45. [PMID: 36934255 PMCID: PMC10024857 DOI: 10.1186/s40478-023-01541-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
New histological techniques are needed to examine protein distribution in human tissues, which can reveal cell shape and disease pathology connections. Spatial proteomics has changed the study of tumor microenvironments by identifying spatial relationships of immunomodulatory cells and proteins and contributing to the discovery of new cancer immunotherapy biomarkers. However, the fast-expanding toolkit of spatial proteomic approaches has yet to be systematically applied to investigate pathological alterations in the aging human brain in health and disease states. Moreover, post-mortem human brain tissue presents distinct technical problems due to fixation procedures and autofluorescence, which limit fluorescence methodologies. This study sought to develop a multiplex immunohistochemistry approach (visualizing the immunostain with brightfield microscopy). Quantitative multiplex Immunohistochemistry with Visual colorimetric staining to Enhance Regional protein localization (QUIVER) was developed to address these technical challenges. Using QUIVER, a ten-channel pseudo-fluorescent image was generated using chromogen removal and digital microscopy to identify unique molecular microglia phenotypes. Next, the study asked if the tissue environment, specifically the amyloid plaques and neurofibrillary tangles characteristic of Alzheimer's disease, has any bearing on microglia's cellular and molecular phenotypes. QUIVER allowed the visualization of five molecular microglia/macrophage phenotypes using digital pathology tools. The recognizable reactive and homeostatic microglia/macrophage phenotypes demonstrated spatial polarization towards and away from amyloid plaques, respectively. Yet, microglia morphology appearance did not always correspond to molecular phenotype. This research not only sheds light on the biology of microglia but also offers QUIVER, a new tool for examining pathological alterations in the brains of the elderly.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Abraham S Nelson
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Lydia G Sanders
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Chloe R Embry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Peter T Nelson
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
8
|
Chen Y, Guo J. Multiplexed Single-Cell in Situ Protein Profiling. ACS MEASUREMENT SCIENCE AU 2022; 2:296-303. [PMID: 35996537 PMCID: PMC9389644 DOI: 10.1021/acsmeasuresciau.2c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to profile a large number of different proteins in individual cells in their native cellular locations is critical to accelerate our understanding of normal cell physiology and disease pathogenesis. Bulk cell protein quantification masks the cell heterogeneity in complex biological systems, while conventional immunofluorescence or immunohistochemistry are limited by their low multiplexing capacity. Recent technological advances in multiplexed protein imaging approaches allow many distinct proteins to be analyzed in single cells in situ. These methods will bring new insights into various biological and biomedical fields, such as cell type and subtype classification, signaling network regulation, tissue architecture, and disease diagnosis and prognosis, along with treatment monitoring. In this Review, we will describe the recent advances of multiplexed single-cell in situ protein profiling technologies, discuss their unique advantages and limitations, highlight their applications in biology and medicine, present the current challenges, and propose potential solutions.
Collapse
|
9
|
Simultaneous amplification of multiple immunofluorescence signals via cyclic staining of target molecules using mutually cross-adsorbed antibodies. Sci Rep 2022; 12:8780. [PMID: 35610501 PMCID: PMC9130514 DOI: 10.1038/s41598-022-12808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Amplification of immunofluorescence (IF) signals is becoming increasingly critical in cancer research and neuroscience. Recently, we put forward a new signal amplification technique, which we termed fluorescent signal amplification via cyclic staining of target molecules (FRACTAL). FRACTAL amplifies IF signals by repeatedly labeling target proteins with a pair of secondary antibodies that bind to each other. However, simultaneous amplification of multiple IF signals via FRACTAL has not yet been demonstrated because of cross-reactivity between the secondary antibodies. In this study, we show that mutual cross-adsorption between antibodies can eliminate all forms of cross-reactions between them, enabling simultaneous amplification of multiple IF signals. First, we show that a typical cross-adsorption process-in which an antibody binds to proteins with potential cross-reactivity with the antibody-cannot eliminate cross-reactions between antibodies in FRACTAL. Next, we show that all secondary antibodies used in FRACTAL need to be mutually cross-adsorbed to eliminate all forms of cross-reactivity, and then we demonstrate simultaneous amplification of multiple IF signals using these antibodies. Finally, we show that multiplexed FRACTAL can be applied to expansion microscopy to achieve higher fluorescence intensities after expansion. Multiplexed FRACTAL is a highly versatile tool for standard laboratories, as it amplifies multiple IF signals without the need for custom antibodies.
Collapse
|
10
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
11
|
Ultrasensitive and Multiplexed Protein Imaging with Cleavable Fluorescent Tyramide and Antibody Stripping. Int J Mol Sci 2021; 22:ijms22168644. [PMID: 34445351 PMCID: PMC8395465 DOI: 10.3390/ijms22168644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
Multiplexed single-cell analysis of proteins in their native cellular contexts holds great promise to reveal the composition, interaction and function of the distinct cell types in complex biological systems. However, the existing multiplexed protein imaging technologies are limited by their detection sensitivity or technical demands. To address these issues, here, we develop an ultrasensitive and multiplexed in situ protein profiling approach by reiterative staining with off-the-shelf antibodies and cleavable fluorescent tyramide (CFT). In each cycle of this approach, the protein targets are recognized by antibodies labeled with horseradish peroxidase, which catalyze the covalent deposition of CFT on or close to the protein targets. After imaging, the fluorophores are chemically cleaved, and the antibodies are stripped. Through continuous cycles of staining, imaging, fluorophore cleavage and antibody stripping, a large number of proteins can be quantified in individual cells in situ. Applying this method, we analyzed 20 different proteins in each of ~67,000 cells in a human formalin-fixed paraffin-embedded (FFPE) tonsil tissue. Based on their unique protein expression profiles and microenvironment, these individual cells are partitioned into different cell clusters. We also explored the cell-cell interactions in the tissue by examining which specific cell clusters are selectively associating or avoiding each other.
Collapse
|
12
|
Xiao L, Labaer J, Guo J. Highly Sensitive and Multiplexed In Situ RNA Profiling with Cleavable Fluorescent Tyramide. Cells 2021; 10:cells10061277. [PMID: 34063986 PMCID: PMC8224041 DOI: 10.3390/cells10061277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the composition, regulation, and function of complex biological systems requires tools that quantify multiple transcripts at their native cellular locations. However, the current multiplexed RNA imaging technologies are limited by their relatively low sensitivity or specificity, which hinders their applications in studying highly autofluorescent tissues, such as formalin-fixed paraffin-embedded (FFPE) tissues. To address this issue, here we develop a multiplexed in situ RNA profiling approach with a high sensitivity and specificity. In this approach, transcripts are first hybridized by target-specific oligonucleotide probes in pairs. Only when these two independent probes hybridize to the target in tandem will the subsequent signal amplification by oligonucleotide hybridization occur. Afterwards, horseradish peroxidase (HRP) is applied to further amplify the signal and stain the target with cleavable fluorescent tyramide (CFT). After imaging, the fluorophores are chemically cleaved and the hybridized probes are stripped by DNase and formamide. Through cycles of RNA staining, fluorescence imaging, signal cleavage, and probe stripping, many different RNA species can be profiled at the optical resolution. In applying this approach, we demonstrated that multiplexed in situ RNA analysis can be successfully achieved in both fixed, frozen, and FFPE tissues.
Collapse
Affiliation(s)
| | | | - Jia Guo
- Correspondence: ; Tel.: +1-480-727-2096
| |
Collapse
|
13
|
Pham T, Liao R, Labaer J, Guo J. Multiplexed In Situ Protein Profiling with High-Performance Cleavable Fluorescent Tyramide. Molecules 2021; 26:molecules26082206. [PMID: 33921211 PMCID: PMC8070642 DOI: 10.3390/molecules26082206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the composition, function and regulation of complex cellular systems requires tools that quantify the expression of multiple proteins at their native cellular context. Here, we report a highly sensitive and accurate protein in situ profiling approach using off-the-shelf antibodies and cleavable fluorescent tyramide (CFT). In each cycle of this method, protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and CFT. Subsequently, the fluorophores are efficiently cleaved by mild chemical reagents, which simultaneously deactivate HRP. Through reiterative cycles of protein staining, fluorescence imaging, fluorophore cleavage, and HRP deactivation, multiplexed protein quantification in single cells in situ can be achieved. We designed and synthesized the high-performance CFT, and demonstrated that over 95% of the staining signals can be erased by mild chemical reagents while preserving the integrity of the epitopes on protein targets. Applying this method, we explored the protein expression heterogeneity and correlation in a group of genetically identical cells. With the high signal removal efficiency, this approach also enables us to accurately profile proteins in formalin-fixed paraffin-embedded (FFPE) tissues in the order of low to high and also high to low expression levels.
Collapse
Affiliation(s)
| | | | | | - Jia Guo
- Correspondence: ; Tel.: +1-480-727-2096
| |
Collapse
|