1
|
Loesel KE, Hiraki HL, Baker BM, Parent CA. An adaptive and versatile method to quantitate and characterize collective cell migration behaviors on complex surfaces. Front Cell Dev Biol 2023; 11:1106653. [PMID: 36776562 PMCID: PMC9909417 DOI: 10.3389/fcell.2023.1106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Collective cell migration is critical for proper embryonic development, wound healing, and cancer cell invasion. However, much of our knowledge of cell migration has been performed using flat surfaces that lack topographical features and do not recapitulate the complex fibrous architecture of the extracellular matrix (ECM). The recent availability of synthetic fibrous networks designed to mimic in vivo ECM has been key to identify the topological features that dictate cell migration patterns as well as to determine the underlying mechanisms that regulate topography-sensing. Recent studies have underscored the prevalence of collective cell migration during cancer invasion, and these observations present a compelling need to understand the mechanisms controlling contact guidance within migratory, multicellular groups. Therefore, we designed an integrated migration analysis platform combining tunable electrospun fibers that recapitulate aspects of the biophysical properties of the ECM, and computational approaches to investigate collective cell migration. To quantitatively assess migration as a function of matrix topography, we developed an automated MATLAB code that quantifies cell migration dynamics, including speed, directionality, and the number of detached cells. This platform enables live cell imaging while providing enough cells for biochemical, proteomic, and genomic analyses, making our system highly adaptable to multiple experimental investigations.
Collapse
Affiliation(s)
- Kristen E. Loesel
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Harrison L. Hiraki
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carole A. Parent
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States,Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Carole A. Parent,
| |
Collapse
|
2
|
Aslan M, Hsu EC, Liu S, Stoyanova T. Quantifying the invasion and migration ability of cancer cells with a 3D Matrigel drop invasion assay. Biol Methods Protoc 2021; 6:bpab014. [PMID: 34377838 PMCID: PMC8346651 DOI: 10.1093/biomethods/bpab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Metastasis is the main cause of cancer-associated morbidity which will account for ∼ 600,000 deaths in the USA in 2021. Defining new mechanisms that drive cancer metastasis is vital for developing new therapeutic strategies and improving clinical outcomes for cancer patients. Herein, we describe a recently established 3D Matrigel drop invasion assay to measure cancer cell invasion and migration capability in vitro. This assay is a versatile and simple tool to test the ability of cells to invade and migrate, test the functional role of genes of interest in cell invasion and migration, analyze the localization of the target proteins at the cell invasion edge in situ, and screen drug effects on cancer cell invasion and migration.
Collapse
Affiliation(s)
- Merve Aslan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| | - En-Chi Hsu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, 3155 Porter Drive. Palo Alto, CA 94304, USA
| |
Collapse
|