1
|
Ikeda R, Kimura C, Nihashi Y, Umezawa K, Shimosato T, Takaya T. Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner. Life (Basel) 2024; 14:1572. [PMID: 39768281 PMCID: PMC11679607 DOI: 10.3390/life14121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.7 was treated with the receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation, then the effect of iSN40 on was quantified by tartrate-resistant acid phosphatase (TRAP) staining and real-time RT-PCR. iSN40 completely inhibited RANKL-induced differentiation into TRAP+ multinucleated osteoclasts by suppressing osteoclastogenic genes and inducing anti-/non-osteoclastogenic genes. Treatment with a TLR9 inhibitor, E6446, or a mutation in the CpG motif of iSN40 abolished the intracellular uptake and anti-osteoclastogenic effect of iSN40. These results demonstrate that iSN40 is subcellularly internalized and is recognized by TLR9 via its CpG motif, modulates RANKL-dependent osteoclastogenic gene expression, and ultimately inhibits osteoclastogenesis. Finally, iSN40 was confirmed to inhibit the osteoclastogenesis of RAW264.7 cells cocultured with the murine osteoblast cell line MC3T3-E1, presenting a model of bone remodeling. This study demonstrates that iSN40, which exerts both pro-osteogenic and anti-osteoclastogenic effects, may be a promising nucleic acid drug for osteoporosis.
Collapse
Affiliation(s)
- Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Chihaya Kimura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Koji Umezawa
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Institute for Aqua Regeneration, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
2
|
Qiu F, Xie D, Chen H, Wang Z, Huang J, Cao C, Liang Y, Yang X, He DY, Fu X, Lu A, Liang C. Generation of cytotoxic aptamers specifically targeting fibroblast-like synoviocytes by CSCT-SELEX for treatment of rheumatoid arthritis. Ann Rheum Dis 2024:ard-2024-225565. [PMID: 39237134 DOI: 10.1136/ard-2024-225565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune disease characterised by aggressive fibroblast-like synoviocytes (FLSs). Very few RA patients-derived FLSs (RA-FLSs)-specific surface signatures have been identified, and there is currently no approved targeted therapy for RA-FLSs. This study aimed to screen therapeutic aptamers with cell-targeting and cytotoxic properties against RA-FLSs and to uncover the molecular targets and mechanism of action of the screened aptamers. METHODS We developed a cell-specific and cytotoxic systematic evolution of ligands by exponential enrichment (CSCT-SELEX) method to screen the therapeutic aptamers without prior knowledge of the surface signatures of RA-FLSs. The molecular targets and mechanisms of action of the screened aptamers were determined by pull-down assays and RNA sequencing. The therapeutic efficacy of the screened aptamers was examined in arthritic mouse models. RESULTS We obtained an aptamer SAPT8 that selectively recognised and killed RA-FLSs. The molecular target of SAPT8 was nucleolin (NCL), a shuttling protein overexpressed on the surface and involved in the tumor-like transformation of RA-FLSs. Mechanistically, SAPT8 interacted with the surface NCL and was internalised to achieve lysosomal degradation of NCL, leading to the upregulation of proapoptotic p53 and downregulation of antiapoptotic B-cell lymphoma 2 (Bcl-2) in RA-FLSs. When administrated systemically to arthritic mice, SAPT8 accumulated in the inflamed FLSs of joints. SAPT8 monotherapy or its combination with tumour necrosis factor (TNF)-targeted biologics was shown to relieve arthritis in mouse models. CONCLUSIONS CSCT-SELEX could be a promising strategy for developing cell-targeting and cytotoxic aptamers. SAPT8 aptamer selectively ablates RA-FLSs via modulating NCL-p53/Bcl-2 signalling, representing a potential alternative or complementary therapy for RA.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Xu Yang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong-Yi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
3
|
Miyoshi M, Shimosato T, Takaya T. Myogenic Anti-Nucleolin Aptamer iSN04 Inhibits Proliferation and Promotes Differentiation of Vascular Smooth Muscle Cells. Biomolecules 2024; 14:709. [PMID: 38927112 PMCID: PMC11201766 DOI: 10.3390/biom14060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease.
Collapse
MESH Headings
- Nucleolin
- Animals
- RNA-Binding Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Aptamers, Nucleotide/pharmacology
- Cell Proliferation/drug effects
- Phosphoproteins/metabolism
- Cell Differentiation/drug effects
- Humans
- Rats
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Mice
- Cells, Cultured
- Oligodeoxyribonucleotides/pharmacology
- Male
- Rats, Sprague-Dawley
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
4
|
Umezawa K, Ikeda R, Sakamoto T, Enomoto Y, Nihashi Y, Shinji S, Shimosato T, Kagami H, Takaya T. Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation. BIOTECH 2024; 13:11. [PMID: 38804293 PMCID: PMC11130974 DOI: 10.3390/biotech13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.
Collapse
Affiliation(s)
- Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Rena Ikeda
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi 275-0016, Japan;
| | - Yuya Enomoto
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Centoral 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan;
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan; (K.U.); (Y.E.); (T.S.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina 399-4598, Japan
| |
Collapse
|
5
|
Ishioka M, Nihashi Y, Sunagawa Y, Umezawa K, Shimosato T, Kagami H, Morimoto T, Takaya T. Myogenetic Oligodeoxynucleotide Induces Myocardial Differentiation of Murine Pluripotent Stem Cells. Int J Mol Sci 2023; 24:14380. [PMID: 37762684 PMCID: PMC10532123 DOI: 10.3390/ijms241814380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
An 18-base myogenetic oligodeoxynucleotide (myoDN), iSN04, acts as an anti-nucleolin aptamer and induces myogenic differentiation of skeletal muscle myoblasts. This study investigated the effect of iSN04 on murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). In the undifferentiated state, iSN04 inhibited the proliferation of ESCs and iPSCs but did not affect the expression of pluripotent markers. In the differentiating condition, iSN04 treatment of ESCs/iPSCs from day 5 onward dramatically induced differentiation into Nkx2-5+ beating cardiomyocytes with upregulation of Gata4, Isl1, and Nkx2-5, whereas iSN04 treatment from earlier stages completely inhibited cardiomyogenesis. RNA sequencing revealed that iSN04 treatment from day 5 onward contributes to the generation of cardiac progenitors by modulating the Wnt signaling pathway. Immunostaining showed that iSN04 suppressed the cytoplasmic translocation of nucleolin and restricted it to the nucleoli. These results demonstrate that nucleolin inhibition by iSN04 facilitates the terminal differentiation of cardiac mesoderm into cardiomyocytes but interferes with the differentiation of early mesoderm into the cardiac lineage. This is the first report on the generation of cardiomyocytes from pluripotent stem cells using a DNA aptamer. Since iSN04 did not induce hypertrophic responses in primary-cultured cardiomyocytes, iSN04 would be useful and safe for the regenerative therapy of heart failure using stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Mina Ishioka
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (Y.S.); (T.M.)
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (M.I.); (T.S.)
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (K.U.); (H.K.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
6
|
Yamamoto M, Miyoshi M, Morioka K, Mitani T, Takaya T. Anti-nucleolin aptamer, iSN04, inhibits the inflammatory responses in C2C12 myoblasts by modulating the β-catenin/NF-κB signaling pathway. Biochem Biophys Res Commun 2023; 664:1-8. [PMID: 37127012 DOI: 10.1016/j.bbrc.2023.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
A myogenetic oligodeoxynucleotide, iSN04, is the 18-base single-stranded DNA that acts as an anti-nucleolin aptamer. iSN04 has been reported to restore myogenic differentiation by suppressing inflammatory responses in myoblasts isolated from patients with diabetes or healthy myoblasts exposed to cancer-releasing factors. Thus, iSN04 is expected to be a nucleic acid drug for the muscle wasting associated with chronic diseases. The present study investigated the anti-inflammatory mechanism of iSN04 in the murine myoblast cell line C2C12. Tumor necrosis factor-α (TNF-α) or Toll-like receptor (TLR) ligands (Pam3CSK4 and FSL-1) induced nuclear translocation and transcriptional activity of nuclear factor-κB (NF-κB), resulting in upregulated expression of TNF-α and interleukin-6. Pre-treatment with iSN04 significantly suppressed these inflammatory responses by inhibiting the nuclear accumulation of β-catenin induced by TNF-α or TLR ligands. These results demonstrate that antagonizing nucleolin with iSN04 downregulates the inflammatory effect mediated by the β-catenin/NF-κB signaling pathway in C2C12 cells. In addition, the anti-inflammatory effects of iSN04 were also observed in the rat smooth muscle cell line A10 and the murine adipocyte-like fibroblast cell line 3T3-L1, suggesting that iSN04 may be useful in preventing inflammation induced by metabolic disorders.
Collapse
Affiliation(s)
- Machi Yamamoto
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Kamino Morioka
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Takakazu Mitani
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan; Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|
7
|
Nohira N, Shinji S, Nakamura S, Nihashi Y, Shimosato T, Takaya T. Myogenetic Oligodeoxynucleotides as Anti-Nucleolin Aptamers Inhibit the Growth of Embryonal Rhabdomyosarcoma Cells. Biomedicines 2022; 10:2691. [PMID: 36359210 PMCID: PMC9687923 DOI: 10.3390/biomedicines10112691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 in vitro on the growth of multiple patient-derived ERMS cell lines, ERMS1, KYM1, and RD. RT-PCR and immunostaining revealed that nucleolin was abundantly expressed and localized in nucleoplasm and nucleoli in all ERMS cell lines, similar to myoblasts. Both iSN04 and AS1411 at final concentrations of 10-30 μM significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. In all ERMS cell lines, iSN04 at a final concentration of 10 μM markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. Quantitative RT-PCR or immunostaining of phosphorylated histone H3 and myosin heavy chain demonstrated that iSN04 suppressed the cell cycle and partially promoted myogenesis but did not induce apoptosis in ERMS cells. Finally, both iSN04 and AS1411 at final concentrations of 10-30 μM disrupted the formation and outgrowth of RD tumorspheres in three-dimensional culture mimicking in vivo tumorigenesis. In conclusion, ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411, which modulates several cell cycle-related and myogenic gene expression. The present study provides evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.
Collapse
Affiliation(s)
- Naoki Nohira
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5-41, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takeshi Shimosato
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
8
|
Nihashi Y, Miyoshi M, Umezawa K, Shimosato T, Takaya T. Identification of a Novel Osteogenetic Oligodeoxynucleotide (osteoDN) That Promotes Osteoblast Differentiation in a TLR9-Independent Manner. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1680. [PMID: 35630904 PMCID: PMC9145662 DOI: 10.3390/nano12101680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Dysfunction of bone-forming cells, osteoblasts, is one of the causes of osteoporosis. Accumulating evidence has indicated that oligodeoxynucleotides (ODNs) designed from genome sequences have the potential to regulate osteogenic cell fate. Such osteogenetic ODNs (osteoDNs) targeting and activating osteoblasts can be the candidates of nucleic acid drugs for osteoporosis. In this study, the ODN library derived from the Lacticaseibacillus rhamnosus GG genome was screened to determine its osteogenetic effect on murine osteoblast cell line MC3T3-E1. An 18-base ODN, iSN40, was identified to enhance alkaline phosphatase activity of osteoblasts within 48 h. iSN40 also induced the expression of osteogenic genes such as Msx2, osterix, collagen type 1α, osteopontin, and osteocalcin. Eventually, iSN40 facilitated calcium deposition on osteoblasts at the late stage of differentiation. Intriguingly, the CpG motif within iSN40 was not required for its osteogenetic activity, indicating that iSN40 functions in a TLR9-independent manner. These data demonstrate that iSN40 serves as a novel osteogenetic ODN (osteoDN) that promotes osteoblast differentiation. iSN40 provides a potential seed of the nucleic acid drug that activating osteoblasts for osteoporosis therapy.
Collapse
Affiliation(s)
- Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (Y.N.); (T.S.)
| | - Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (Y.N.); (T.S.)
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan; (Y.N.); (T.S.)
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
9
|
Nihashi Y, Shinji S, Umezawa K, Shimosato T, Ono T, Kagami H, Takaya T. Myogenetic oligodeoxynucleotide complexed with berberine promotes differentiation of chicken myoblasts. Anim Sci J 2021; 92:e13597. [PMID: 34309956 DOI: 10.1111/asj.13597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Myoblasts are myogenic precursors that develop into myotubes during muscle formation. Improving efficiency of myoblast differentiation is important for advancing meat production by domestic animals. We recently identified novel oligodeoxynucleotides (ODNs) termed myogenetic ODNs (myoDNs) that promote the differentiation of mammalian myoblasts. An isoquinoline alkaloid, berberine, forms a complex with one of the myoDNs, iSN04, and enhances its activities. This study investigated the effects of myoDNs on chicken myoblasts to elucidate their species-specific actions. Seven myoDNs (iSN01-iSN07) were found to facilitate the differentiation of chicken myoblasts into myosin heavy chain (MHC)-positive myotubes. The iSN04-berberine complex exhibited a higher myogenetic activity than iSN04 alone, which was shown to enhance the differentiation of myoblasts into myotubes and the upregulation of myogenic gene expression (MyoD, myogenin, MHC, and myomaker). These data indicate that myoDNs promoting chicken myoblast differentiation may be used as potential feed additives in broiler diets.
Collapse
Affiliation(s)
- Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.,Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan.,Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tamao Ono
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Hiroshi Kagami
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan.,Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan.,Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
10
|
Nakamura S, Yonekura S, Shimosato T, Takaya T. Myogenetic Oligodeoxynucleotide (myoDN) Recovers the Differentiation of Skeletal Muscle Myoblasts Deteriorated by Diabetes Mellitus. Front Physiol 2021; 12:679152. [PMID: 34108889 PMCID: PMC8181739 DOI: 10.3389/fphys.2021.679152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle wasting in patients with diabetes mellitus (DM) is a complication of decreased muscle mass and strength, and is a serious risk factor that may result in mortality. Deteriorated differentiation of muscle precursor cells, called myoblasts, in DM patients is considered to be one of the causes of muscle wasting. We recently developed myogenetic oligodeoxynucleotides (myoDNs), which are 18-base single-strand DNAs that promote myoblast differentiation by targeting nucleolin. Herein, we report the applicability of a myoDN, iSN04, to myoblasts isolated from patients with type 1 and type 2 DM. Myogenesis of DM myoblasts was exacerbated concordantly with a delayed shift of myogenic transcription and induction of interleukins. Analogous phenotypes were reproduced in healthy myoblasts cultured with excessive glucose or palmitic acid, mimicking hyperglycemia or hyperlipidemia. iSN04 treatment recovered the deteriorated differentiation of plural DM myoblasts by downregulating myostatin and interleukin-8 (IL-8). iSN04 also ameliorated the impaired myogenic differentiation induced by glucose or palmitic acid. These results demonstrate that myoDNs can directly facilitate myoblast differentiation in DM patients, making them novel candidates for nucleic acid drugs to treat muscle wasting in patients with DM.
Collapse
Affiliation(s)
- Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Shinichi Yonekura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|