1
|
Longakit AN, Bourget H, Van Raamsdonk CD. Mitf over-expression leads to microphthalmia and coloboma in Mitf-cre mice. Exp Eye Res 2024; 251:110209. [PMID: 39694408 DOI: 10.1016/j.exer.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Mitf transcription factor is a critical regulator of the melanocyte lineage and eye development. Mitf activity in different cell types is controlled in part by ten alternative promoters and their resulting isoforms. A useful tool for melanocyte-based research, Mitf-cre was designed to express Cre from the Mitf-M promoter, which is melanocyte specific. However, Mitf-cre mice are also microphthalmic, perhaps because of insertional mutagenesis or disrupted gene expression. Here, we investigated these possibilities and described the eye phenotype. Targeted locus amplification indicated that the transgene integrated on chromosome 2, in between Spred1 and Meis2. The BAC transgene used to make Mitf-cre was larger than expected, carrying three upstream alternative promoters, Mitf-H, Mitf-D, and Mitf-B, which could express their isoforms intact off the transgene. RT-qPCR using eye tissue demonstrated a 5-fold increase in Mitf transcripts containing exon 1B1b, which is shared by Mitf-H, Mitf-D, and Mitf-B, while Spred1 and Meis2 did not differ in their expression. These findings clarify and support the usage of Mitf-cre in conditional mutagenesis in melanocytes. The specific over-expression of these isoforms, which are preferentially expressed in the RPE, presents a unique resource for those interested in eye development and coloboma.
Collapse
Affiliation(s)
- Anne Nathalie Longakit
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Hannah Bourget
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Toms M, Heppell C, Owen N, Malka S, Moosajee M. A Novel De Novo Missense Variant in Netrin-1 (NTN1) Associated With Chorioretinal Coloboma, Sensorineural Hearing Loss and Polydactyly. Clin Genet 2024. [PMID: 39648562 DOI: 10.1111/cge.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) comprise a highly heterogeneous spectrum of congenital ocular malformations with an estimated incidence of 1 in 5000 to 1 in 30 000 live births. Although there is likely to be a genetic component in the majority of cases, many remain without a molecular diagnosis. Netrin-1 was previously identified as a mediator of optic fissure closure from transcriptome analyses of chick and zebrafish and was shown to cause ocular coloboma when knocked out in both mouse and zebrafish. Here, we report the first patient with chorioretinal coloboma and microphthalmia harbouring a novel heterozygous likely pathogenic NTN1 missense variant, c.1483T>A p.(Tyr495Asn), validating a conserved gene function in ocular development. In addition, the patient displayed bilateral sensorineural hearing loss which was investigated by examining the sensory hair cells of ntn1a morphant zebrafish, suggesting a role for netrin-1 in hair cell development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
| | - Cara Heppell
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
| | - Samantha Malka
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, UK
- The Francis Crick Institute, London, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Hofstetter KS, Haas PM, Kuntz JP, Zheng Y, Fuhrmann S. Loss of Cdc42 causes abnormal optic cup morphogenesis and microphthalmia in mouse. Front Cell Neurosci 2024; 18:1474010. [PMID: 39650797 PMCID: PMC11622195 DOI: 10.3389/fncel.2024.1474010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mislocalize deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
Collapse
Affiliation(s)
- Katrina S. Hofstetter
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula M. Haas
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathon P. Kuntz
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| |
Collapse
|
4
|
Neelathi UM, Ullah E, George A, Maftei MI, Boobalan E, Sanchez-Mendoza D, Adams C, McGaughey D, Sergeev YV, Rawi RA, Naik A, Bender C, Maumenee IH, Michaelides M, Tan TG, Lin S, Villasmil R, Blain D, Hufnagel RB, Arno G, Young RM, Guan B, Brooks BP. Variants in NR6A1 cause a novel oculo-vertebral-renal (OVR) syndrome. RESEARCH SQUARE 2024:rs.3.rs-5375105. [PMID: 39606449 PMCID: PMC11601836 DOI: 10.21203/rs.3.rs-5375105/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colobomatous microphthalmia is a potentially blinding congenital ocular malformation that can present either in isolation or together with other syndromic features. Despite a strong genetic component to disease, many cases lack a molecular diagnosis. We describe a novel autosomal dominant oculo-vertebral-renal (OVR) syndrome in six independent families characterized by colobomatous microphthalmia, missing vertebrae and congenital kidney abnormalities. Genome sequencing identified six rare variants in the orphan nuclear receptor gene NR6A1 in these families. We performed in silico, cellular and zebrafish experiments to demonstrate the NR6A1 variants were pathogenic or likely pathogenic for OVR syndrome. Knockdown of either or both zebrafish paralogs of NR6A1 results in abnormal eye and somite development, which was rescued by wild-type but not variant NR6A1 mRNA. Illustrating the power of genomic ascertainment in medicine, our study establishes NR6A1 as a critical factor in eye and vertebral development and a pleiotropic gene responsible for OVR syndrome.
Collapse
Affiliation(s)
- Uma M Neelathi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Aman George
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mara I Maftei
- UCL Institute of Ophthalmology, University College, London, London, UK
| | - Elangovan Boobalan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Sanchez-Mendoza
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chloe Adams
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - David McGaughey
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuri V Sergeev
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ranya Ai Rawi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amelia Naik
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chelsea Bender
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irene H Maumenee
- Harkness Eye Institute, Columbia University, 622 W 168 St., New York, NY 10032
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Tun Giap Tan
- Torbay Hospital, Torbay and South Devon NHS Foundation Trust, Devon, UK
| | - Siying Lin
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | | | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Center for Integrated Health Care Research, Kaiser Permanente Hawai'i; Hawai'i Permanente Medical Group, Honolulu, HI
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College, London, London, UK
- Greenwood Genetic Center, Greenwood, SC 29646
| | - Rodrigo M Young
- UCL Institute of Ophthalmology, University College, London, London, UK
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Bin Guan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed
| |
Collapse
|
5
|
Neelathi UM, Ullah E, George A, Maftei MI, Boobalan E, Sanchez-Mendoza D, Adams C, McGaughey D, Sergeev YV, Rawi RA, Naik A, Bender C, Maumenee IH, Michaelides M, Tan TG, Lin S, Villasmil R, Blain D, Hufnagel RB, Arno G, Young RM, Guan B, Brooks BP. Variants in NR6A1 cause a novel oculo-vertebral-renal (OVR) syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.09.24316578. [PMID: 39606382 PMCID: PMC11601759 DOI: 10.1101/2024.11.09.24316578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colobomatous microphthalmia is a potentially blinding congenital ocular malformation that can present either in isolation or together with other syndromic features. Despite a strong genetic component to disease, many cases lack a molecular diagnosis. We describe a novel autosomal dominant oculo-vertebral-renal (OVR) syndrome in six independent families characterized by colobomatous microphthalmia, missing vertebrae and congenital kidney abnormalities. Genome sequencing identified six rare variants in the orphan nuclear receptor gene NR6A1 in these families. We performed in silico, cellular and zebrafish experiments to demonstrate the NR6A1 variants were pathogenic or likely pathogenic for OVR syndrome. Knockdown of either or both zebrafish paralogs of NR6A1 results in abnormal eye and somite development, which was rescued by wild-type but not variant NR6A1 mRNA. Illustrating the power of genomic ascertainment in medicine, our study establishes NR6A1 as a critical factor in eye and vertebral development and a pleiotropic gene responsible for OVR syndrome.
Collapse
Affiliation(s)
- Uma M Neelathi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Aman George
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mara I Maftei
- UCL Institute of Ophthalmology, University College, London, London, UK
| | - Elangovan Boobalan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Sanchez-Mendoza
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chloe Adams
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - David McGaughey
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuri V Sergeev
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ranya Ai Rawi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amelia Naik
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chelsea Bender
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irene H Maumenee
- Harkness Eye Institute, Columbia University, 622 W 168th St., New York, NY 10032
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Tun Giap Tan
- Torbay Hospital, Torbay and South Devon NHS Foundation Trust, Devon, UK
| | - Siying Lin
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | | | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Center for Integrated Health Care Research, Kaiser Permanente Hawai'i; Hawai'i Permanente Medical Group, Honolulu, HI
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College, London, London, UK
- Greenwood Genetic Center, Greenwood, SC 29646
| | - Rodrigo M Young
- UCL Institute of Ophthalmology, University College, London, London, UK
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Bin Guan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed
| |
Collapse
|
6
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Li B, Xie T, Nawy S, Shen Y. The development and the genetic diseases of the ciliary body. CELL INSIGHT 2024; 3:100162. [PMID: 38595769 PMCID: PMC11002873 DOI: 10.1016/j.cellin.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
The ciliary body, located at the junction of the choroid and iris, is crucial in the development of the embryonic eye. Notch2 signalling, Wnt signalling, transforming growth factor β (TGF-β) signalling, and Pax6 signalling are critical for coordinating the ciliary body formation. These signalling pathways are coordinated with each other and participate in the ciliary body development, ensuring the precise formation and optimal functioning of the eye structure. Although rare, ciliary body hypoplasia, ciliary tumours, and genetic-related iritis indicate the intricate nature of ciliary body development. Given the ciliary body's important biological significance and potential medical relevance, we aim to provide a comprehensive overview of the developmental molecular mechanisms governing ciliary body formation and function. Here, we focus on the intricate signalling pathways governing ciliary body development and corresponding genetic ciliary diseases.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Trejo-Reveles V, Owen N, Ching Chan BH, Toms M, Schoenebeck JJ, Moosajee M, Rainger J. Identification of Novel Coloboma Candidate Genes through Conserved Gene Expression Analyses across Four Vertebrate Species. Biomolecules 2023; 13:293. [PMID: 36830662 PMCID: PMC9953556 DOI: 10.3390/biom13020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Ocular coloboma (OC) is a failure of complete optic fissure closure during embryonic development and presents as a tissue defect along the proximal-distal axis of the ventral eye. It is classed as part of the clinical spectrum of structural eye malformations with microphthalmia and anophthalmia, collectively abbreviated to MAC. Despite deliberate attempts to identify causative variants in MAC, many patients remain without a genetic diagnosis. To reveal potential candidate genes, we utilised transcriptomes experimentally generated from embryonic eye tissues derived from humans, mice, zebrafish, and chicken at stages coincident with optic fissure closure. Our in-silico analyses found 10 genes with optic fissure-specific enriched expression: ALDH1A3, BMPR1B, EMX2, EPHB3, NID1, NTN1, PAX2, SMOC1, TENM3, and VAX1. In situ hybridization revealed that all 10 genes were broadly expressed ventrally in the developing eye but that only PAX2 and NTN1 were expressed in cells at the edges of the optic fissure margin. Of these conserved optic fissure genes, EMX2, NID1, and EPHB3 have not previously been associated with human MAC cases. Targeted genetic manipulation in zebrafish embryos using CRISPR/Cas9 caused the developmental MAC phenotype for emx2 and ephb3. We analysed available whole genome sequencing datasets from MAC patients and identified a range of variants with plausible causality. In combination, our data suggest that expression of genes involved in ventral eye development is conserved across a range of vertebrate species and that EMX2, NID1, and EPHB3 are candidate loci that warrant further functional analysis in the context of MAC and should be considered for sequencing in cohorts of patients with structural eye malformations.
Collapse
Affiliation(s)
- Violeta Trejo-Reveles
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1A, UK
| | - Brian Ho Ching Chan
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1A, UK
| | - Jeffrey J. Schoenebeck
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1A, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Joe Rainger
- Roslin Institute, R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
9
|
Boobalan E, Thompson AH, Alur RP, McGaughey DM, Dong L, Shih G, Vieta-Ferrer ER, Onojafe IF, Kalaskar VK, Arno G, Lotery AJ, Guan B, Bender C, Memon O, Brinster L, Soleilhavoup C, Panman L, Badea TC, Minella A, Lopez AJ, Thomasy SM, Moshiri A, Blain D, Hufnagel RB, Cogliati T, Bharti K, Brooks BP. Zfp503/Nlz2 Is Required for RPE Differentiation and Optic Fissure Closure. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 36326727 PMCID: PMC9645360 DOI: 10.1167/iovs.63.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purpose Uveal coloboma is a congenital eye malformation caused by failure of the optic fissure to close in early human development. Despite significant progress in identifying genes whose regulation is important for executing this closure, mutations are detected in a minority of cases using known gene panels, implying additional genetic complexity. We have previously shown knockdown of znf503 (the ortholog of mouse Zfp503) in zebrafish causes coloboma. Here we characterize Zfp503 knockout (KO) mice and evaluate transcriptomic profiling of mutant versus wild-type (WT) retinal pigment epithelium (RPE)/choroid. Methods Zfp503 KO mice were generated by gene targeting using homologous recombination. Embryos were characterized grossly and histologically. Patterns and level of developmentally relevant proteins/genes were examined with immunostaining/in situ hybridization. The transcriptomic profile of E11.5 KO RPE/choroid was compared to that of WT. Results Zfp503 is dynamically expressed in developing mouse eyes, and loss of its expression results in uveal coloboma. KO embryos exhibit altered mRNA levels and expression patterns of several key transcription factors involved in eye development, including Otx2, Mitf, Pax6, Pax2, Vax1, and Vax2, resulting in a failure to maintain the presumptive RPE, as evidenced by reduced melanin pigmentation and its differentiation into a neural retina-like lineage. Comparison of RNA sequencing data from WT and KO E11.5 embryos demonstrated reduced expression of melanin-related genes and significant overlap with genes known to be dynamically regulated at the optic fissure. Conclusions These results demonstrate a critical role of Zfp503 in maintaining RPE fate and optic fissure closure.
Collapse
Affiliation(s)
- Elangovan Boobalan
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Amy H. Thompson
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ramakrishna P. Alur
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David M. McGaughey
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lijin Dong
- Mouse Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Grace Shih
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Emile R. Vieta-Ferrer
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ighovie F. Onojafe
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Vijay K. Kalaskar
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, United Kingdom,Moorfields Eye Hospital, London, United Kingdom
| | - Andrew J. Lotery
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bin Guan
- Ophthalmic Genetics Laboratory, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chelsea Bender
- Ophthalmic Genetics Laboratory, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Omar Memon
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lauren Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Lia Panman
- MRC Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States,Research and Development Institute, Transilvania University of Brașov, Brașov, Romania,National Center for Brain Research, ICIA, Romanian Academy, Bucharest, România
| | - Andrea Minella
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California, United States
| | - Antonio Jacobo Lopez
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Davis, California, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, California, United States,Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Davis, California, United States
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Davis, California, United States
| | - Delphine Blain
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B. Hufnagel
- Ophthalmic Genetics Laboratory, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P. Brooks
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
10
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
11
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
12
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|