1
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Xu Y, Yang Y, Wang Z, Sjöström M, Jiang Y, Tang Y, Cheng S, Deng S, Wang C, Gonzalez J, Johnson NA, Li X, Li X, Metang LA, Mukherji A, Xu Q, Tirado CR, Wainwright G, Yu X, Barnes S, Hofstad M, Chen Y, Zhu H, Hanker AB, Raj GV, Zhu G, He HH, Wang Z, Arteaga CL, Liang H, Feng FY, Wang Y, Wang T, Mu P. ZNF397 Deficiency Triggers TET2-Driven Lineage Plasticity and AR-Targeted Therapy Resistance in Prostate Cancer. Cancer Discov 2024; 14:1496-1521. [PMID: 38591846 PMCID: PMC11285331 DOI: 10.1158/2159-8290.cd-23-0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming that allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified zinc finger protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a ten-eleven translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR-targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Significance: This study reveals a bifurcated role of ZNF397, and a TET2-driven epigenetic mechanism regulating tumor lineage plasticity and therapy response in prostate cancer, enhances the understanding of drug resistance, and unveils a new therapeutic strategy for overcoming androgen receptor-targeted therapy resistance.
Collapse
Affiliation(s)
- Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
| | - Zhaoning Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California.
| | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.
| | - Yuyin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, Louisiana.
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Nickolas A. Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xiang Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Lauren A. Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Quanhui Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Carla R. Tirado
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Garrett Wainwright
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xinzhe Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - Spencer Barnes
- Bioinformatics Core Facility of the Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NYC, New York, New York.
| | - Hong Zhu
- Division of Biostatistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - Ariella B. Hanker
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Ganesh V. Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Housheng H. He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - Carlos L. Arteaga
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Felix Y. Feng
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | - Yunguan Wang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229.
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Giudice V, Serio B, Errichiello S, Ferrara I, Galdiero A, Bertolini A, Visconti R, De Novellis D, Guariglia R, Luponio S, Morini D, Della Corte AM, Sessa AM, Verdesca F, Langella M, Izzo B, Selleri C. Subclones with variants of uncertain clinical significance might contribute to ineffective hemopoiesis and leukemia predisposition. Eur J Haematol 2023; 111:729-741. [PMID: 37501402 DOI: 10.1111/ejh.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Splicing modifications, genomic instability, and hypomethylation are central mechanisms promoting myelodysplasia and acute myeloid leukemia (AML). In this real-life retrospective study, to elucidate pathophysiology of clonal hemopoiesis in hematological malignancies, we investigated clinical significance of mutations in leukemia-related genes of known pathogenetic significance and of variants of uncertain clinical significance (VUS) in a cohort of patients with MDS and AML. METHODS A total of 59 consecutive subjects diagnosed with MDS, 48 with AML, and 17 with clonal cytopenia with unknown significance were screened for somatic mutations in AML-related genes by next-generation sequencing. RESULTS We showed that TET2, SETBP1, ASXL1, EZH2, RUNX1, SRSF2, DNMT3A, and IDH1/2 were commonly mutated. MDS patients also showed a high genetic complexity, especially for SETBP1. Moreover, the presence of SETBP1 wild-type or two or more simultaneous VUS variants identified a subgroup of AML and MDS patients with better outcome, while the presence of single SETBP1 VUS variant was related to a worse prognosis, regardless TET2 mutational status. CONCLUSIONS In conclusions, we linked both pathogenic and VUS variants in AML-related genes to clonal hematopoiesis; therefore, we proposed to consider those variants as prognostic markers in leukemia and myelodysplasia. However, further studies in larger prospective cohorts are required to validate our results.
Collapse
Affiliation(s)
- Valentina Giudice
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Santa Errichiello
- Department of Molecular Medicine and Medical Biotechnology, CEINGE-Biotecnologie Avanzate, University of Naples "Federico II", Naples, Italy
| | - Idalucia Ferrara
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Alessandra Galdiero
- Department of Molecular Medicine and Medical Biotechnology, CEINGE-Biotecnologie Avanzate, University of Naples "Federico II", Naples, Italy
| | - Angela Bertolini
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Roberta Visconti
- Department of Molecular Medicine and Medical Biotechnology, CEINGE-Biotecnologie Avanzate, University of Naples "Federico II", Naples, Italy
| | - Danilo De Novellis
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| | - Roberto Guariglia
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Serena Luponio
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Denise Morini
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Anna Maria Della Corte
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Anna Maria Sessa
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Francesco Verdesca
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Maddalena Langella
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Barbara Izzo
- Department of Molecular Medicine and Medical Biotechnology, CEINGE-Biotecnologie Avanzate, University of Naples "Federico II", Naples, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
4
|
Xu Y, Wang Z, Sjöström M, Deng S, Wang C, Johnson NA, Gonzalez J, Li X, Metang LA, Tirado CR, Mukherji A, Wainwright G, Yu X, Yang Y, Barnes S, Hofstad M, Zhu H, Hanker A, He HH, Chen Y, Wang Z, Raj G, Arteaga C, Feng F, Wang Y, Wang T, Mu P. ZNF397 Loss Triggers TET2-driven Epigenetic Rewiring, Lineage Plasticity, and AR-targeted Therapy Resistance in AR-dependent Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563645. [PMID: 37961351 PMCID: PMC10634771 DOI: 10.1101/2023.10.24.563645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.
Collapse
|
5
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Arguello AE, Li A, Sun X, Eggert TW, Mairhofer E, Kleiner RE. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun 2022; 13:4176. [PMID: 35853884 PMCID: PMC9296451 DOI: 10.1038/s41467-022-31876-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
Epitranscriptomic RNA modifications can regulate fundamental biological processes, but we lack approaches to map modification sites and probe writer enzymes. Here we present a chemoproteomic strategy to characterize RNA 5-methylcytidine (m5C) dioxygenase enzymes in their native context based upon metabolic labeling and activity-based crosslinking with 5-ethynylcytidine (5-EC). We profile m5C dioxygenases in human cells including ALKBH1 and TET2 and show that ALKBH1 is the major hm5C- and f5C-forming enzyme in RNA. Further, we map ALKBH1 modification sites transcriptome-wide using 5-EC-iCLIP and ARP-based sequencing to identify ALKBH1-dependent m5C oxidation in a variety of tRNAs and mRNAs and analyze ALKBH1 substrate specificity in vitro. We also apply targeted pyridine borane-mediated sequencing to measure f5C sites on select tRNA. Finally, we show that f5C at the wobble position of tRNA-Leu-CAA plays a role in decoding Leu codons under stress. Our work provides powerful chemical approaches for studying RNA m5C dioxygenases and mapping oxidative m5C modifications and reveals the existence of novel epitranscriptomic pathways for regulating RNA function. Kleiner and co-workers profile RNA 5-methylcytidine (m5C) dioxygenase enzymes using an activity-based metabolic probing strategy. They reveal ALKBH1 as the major 5-formylcytidine (f5C) writer and characterize modification sites across mRNA and tRNA.
Collapse
Affiliation(s)
- A Emilia Arguello
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Tanner W Eggert
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | | | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
Huang F, Jiang J, Yao Y, Hu S, Wang H, Zhu M, Yu L, Liu Q, Jia H, Xu W. Circular RNA Hsa_circRNA_101996 promotes the development of Gastric Cancer via Upregulating Matrix Metalloproteinases-2/Matrix Metalloproteinases-9 through MicroRNA-143/Ten-eleven translocation-2 Pathway. J Cancer 2021; 12:6665-6675. [PMID: 34659556 PMCID: PMC8518011 DOI: 10.7150/jca.62121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/12/2021] [Indexed: 11/05/2022] Open
Abstract
Background: The long-term survival rate of gastric cancer (GC) patients at advanced stages remains low worldwide. Circular RNAs (circRNAs) a newly studied type of non-coding RNA that play an important role in the pathogenesis and diagnosis of various diseases. In this research, we aimed to explore the functions of hsa_circRNA_101996 in GC cells and an animal model of GC. Methods: The expression of hsa_circRNA_101996, microRNA (miR)-143, and ten-eleven translocation (TET)-2 in GC tissues, the adjacent tissues, and cell lines were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Transwell assays were used to analyze the knockdown effects of hsa_circRNA_101996, miR-143, and overexpression of TET2 on cell proliferation, migration, and invasion abilities. Western blotting was used to analyze the expression of matrix metalloproteinases (MMP)2/MMP9. Binding interactions between, hsa_circRNA_101996 and miR-143 and between, miR-143 and TET2 were detected by Dual-luciferase reporter assays. Levels of protein expression were analyzed by Western blotting. Tumor models were established by subcutaneous injection of tumor cells in Bl6/Rag2/GammaC double knockout mice. Results: The result showed that hsa_circRNA_101996 expression was significantly upregulated in GC tissues compared to that in the adjacent tissues, and its level in cancer tissue was correlated with tumor size, lymphatic metastasis, and distant metastasis. Compared with the low hsa_circRNA_101996 expression group, the three-year survival rate of patients in the high hsa_circRNA_101996 expression group was significantly lower. The knockdown of hsa_circRNA_101996 dramatically suppressed the cell migration, invasion, and proliferation of GC cells by sponging to absorb miR-143 and elevated the expression of TET2. In vivo studies showed that the knockdown of hsa_circRNA_101996 delayed tumor growth. Furthermore, we revealed that TET2 regulates MMP2/MMP9 expression through the DNA demethylation pathway. Conclusion: Our findings indicate that hsa_circRNA_101996 promotes GC development by upregulating MMP2/MMP9 through miR-143/TET2 pathway, which may provide a novel target for GC.
Collapse
Affiliation(s)
- Feng Huang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Jiajia Jiang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Shiyue Hu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - He Wang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Ma Zhu
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Liya Yu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Qingqian Liu
- Department of Clinical Laboratory, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, 215300, China
| | - Haoyuan Jia
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
- Aoyang Institute of Cancer, Jiangsu University, 279 Jingang Road, Suzhou, 215600, Jiangsu, China
| |
Collapse
|